10.10. A ventilation system has been designed for a large laboratory with a volume of 1100 m3. The volumetric flow rate of ventilation air is 700 m3/min at 22°C and 1 atm. (The latter two values may also be taken as the temperature and pressure of the room air.) A reactor in the laboratory is capable of emitting as much as 1.50 mol of sulfur dioxide into the room if a seal ruptures. An SO2mole fraction in the room air greater than 1.0 × 10-6(1 ppm) constitutes a health hazard.
- Suppose the reactor seal ruptures at a time t = 0, and the maximum amount of SO2is emitted and spreads uniformly throughout the room almost instantaneously. Assuming that the air flow is sufficient to make the room air composition spatially uniform, write a differential SO2balance, letting N be the total moles of gas in the room (assume constant) and x(t) the mole fraction of SO2in the laboratory air. Convert the balance into an equation for dx/dt and provide an initial condition. (Assume that all of the SO2emitted is in the room at t = 0.)
- Predict the shape of a plot of x versus t. Explain your reasoning, using the equation of Part (a) in your explanation.
- Separate variables and integrate the balance to obtain an expression for.x(t). Check your solution.
- Convert the expression for x(t) into an expression for the concentration of SO2in the room, Cso2(mol SO2/L). Calculate (i) the concentration of SO2in the room two minutes after the rupture occurs, and (ii) the time required for the SO2concentration to reach the “safe” level.
- Why would it probably not yet be safe to enter the room after the time calculated in Part (d)? (Hint: One of the assumptions made in the problem is probably not a good one.)

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
ELEM.PRINCIPLES OF CHEMICAL PROCESSES
Additional Engineering Textbook Solutions
Database Concepts (8th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Concepts Of Programming Languages
Mechanics of Materials (10th Edition)
Modern Database Management
- So, the first image is what I'm trying to understand regarding my approach. The second image illustrates my teacher's method, and the third image includes my notes on the concepts behind these types of problems.arrow_forwardHAND DRAWarrow_forwardDraw a mental model for calcium chloride mixed with sodium phosphatearrow_forward
- here is my question (problem number 20) please explain to me thanks!arrow_forwardThe bromination of anisole is an extremely fast reaction. Complete the resonance structures of the intermediate arenium cation for the reaction (Part 1), and then answer the question that follows (Part 2).arrow_forwardDrawing of 3-fluro-2methylphenolarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





