Consider steady heat transfer between two large parallel plates at constant temperatures of T 1 = 290 K and T 2 = 150 K that are L = 2 cm apart. Assuming the surfaces to be black (emissivity ε = 1 ) , determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is (a) filled with atmospheric air, (b) evacuated, (c) filled with fiberglass insulation, and (b) filled with super insulation having an apparent thermal conductivity of 0.00015 W/m⋅K.
Consider steady heat transfer between two large parallel plates at constant temperatures of T 1 = 290 K and T 2 = 150 K that are L = 2 cm apart. Assuming the surfaces to be black (emissivity ε = 1 ) , determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is (a) filled with atmospheric air, (b) evacuated, (c) filled with fiberglass insulation, and (b) filled with super insulation having an apparent thermal conductivity of 0.00015 W/m⋅K.
Consider steady heat transfer between two large parallel plates at constant temperatures of
T
1
=
290
K
and
T
2
=
150
K
that are
L
=
2
cm
apart. Assuming the surfaces to be black (emissivity
ε
=
1
)
,
determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is (a) filled with atmospheric air, (b) evacuated, (c) filled with fiberglass insulation, and (b) filled with super insulation having an apparent thermal conductivity of 0.00015 W/m⋅K.
Q.1) Block A is connected to block B by a pulley
system as shown. The weights of blocks A and B
are 100 lbs and 70 lbs, respectively. Assume
negligible friction between the rope and all pulleys
as well as between block B and the incline and
neglect the mass of all pulleys and cables.
Determine the angle 0 required to keep the system
in equilibrium. (At least two FBDs must be drawn
for full credit)
B
Ꮎ
000
pls solve
+1.
0,63 fin
r= 0.051
P
The stepped rod in sketch is subjected to a tensile
force that varies between 4000 and 7000 lb. The
rod has a machined surface finish everywhere except
the shoulder area,
where a grinding operation has
been performed to improve the fatigue resistance
of the rod. Using a 99% probability of survival,
determine the safety factor for infinite life if
the rod is made of AISI 1080 steel, quenched
and tempered at 800°c Use the Goodman line.
Does the part fail at the fillet? Explain
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.