The purpose of this problem is to show the entire concept of dimensional consistency can be summarized but the old saying “You can’t add apples and oranges.” It you have studied power series expansions in a calculus course, you know the standard mathematical funstions such as trigonometric functions, logarithms, and exponential function can be expressed as infinite sums of the form where the a n are dimensionless constants for all n = 0, 1, 2, … and x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional consistency. That is, it actually implies the arguments of standard mathematical funstions must be dimensional consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have done in this section.
The purpose of this problem is to show the entire concept of dimensional consistency can be summarized but the old saying “You can’t add apples and oranges.” It you have studied power series expansions in a calculus course, you know the standard mathematical funstions such as trigonometric functions, logarithms, and exponential function can be expressed as infinite sums of the form where the a n are dimensionless constants for all n = 0, 1, 2, … and x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional consistency. That is, it actually implies the arguments of standard mathematical funstions must be dimensional consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have done in this section.
The purpose of this problem is to show the entire concept of dimensional consistency can be summarized but the old saying “You can’t add apples and oranges.” It you have studied power series expansions in a calculus course, you know the standard mathematical funstions such as trigonometric functions, logarithms, and exponential function can be expressed as infinite sums of the form where the an are dimensionless constants for all n = 0, 1, 2, … and x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional consistency. That is, it actually implies the arguments of standard mathematical funstions must be dimensional consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have done in this section.
Please calculate the expectation value for E and the uncertainty in E for this wavefunction trapped in a simple harmonic oscillator potential
If an object that has a mass of 2m and moves with velocity v to the right collides with another mass of 1m that is moving with velocity v to the left, in which direction will the combined inelastic collision move?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
02 - Learn Unit Conversions, Metric System & Scientific Notation in Chemistry & Physics; Author: Math and Science;https://www.youtube.com/watch?v=W_SMypXo7tc;License: Standard Youtube License