University Physics Volume 1
1st Edition
ISBN: 9781630182137
Author: Samuel J Ling Jeff, Sanny, William Moebs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 65P
A floating-point operation is a single arithmetic operation such as addition, subtraction, multiplication, division. (a) Estimate the maximum number of floating- point operations a human being could possibly perform in a lifetime. (b) How long would it take a supercomputer to perform that many floating-point operations?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Review the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle.
Equation: SF=ma
Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!
Please solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)
Answer this
Chapter 1 Solutions
University Physics Volume 1
Ch. 1 - Check Your Understanding Restate 4.79105kg using a...Ch. 1 - Check Your Understanding Light navels about 9 Pm...Ch. 1 - Check Your Understanding We know horn Figure 1.4...Ch. 1 - Check Your Understanding Given that 1 lb (pound)...Ch. 1 - Check Your Understanding Suppose we want the...Ch. 1 - Check Your Understanding Is the equation...Ch. 1 - Check Your Understanding Figure 1.4 says the mass...Ch. 1 - Check Your Understanding A high school track coach...Ch. 1 - The Scope and Scale of Physics What is physics?Ch. 1 - The Scope and Scale of Physics Some have described...
Ch. 1 - The Scope and Scale of Physics If two different...Ch. 1 - The Scope and Scale of Physics What determines the...Ch. 1 - The Scope and Scale of Physics Certain criteria...Ch. 1 - The Scope and Scale of Physics Can the validity of...Ch. 1 - Units and Standards Identify some advantages of...Ch. 1 - Units and Standards What are the SI base units of...Ch. 1 - Units and Standards What is the difference between...Ch. 1 - For each of the following scenarios, refer to...Ch. 1 - Significant Figures (a) What is the relationship...Ch. 1 - Solving Problems in Physics What information do...Ch. 1 - Solving Problems in Physics What should you do...Ch. 1 - The Scope and Scale of Physics Find the order of...Ch. 1 - Use the orders of magnitude you found in the...Ch. 1 - Roughly how many heartbeats are there in a...Ch. 1 - A generation is about one-third of a lifetime....Ch. 1 - Roughly how many times longer than the mean life...Ch. 1 - Calculate the approximate number of atoms in a...Ch. 1 - (a) Calculate the number of cells in a hummingbird...Ch. 1 - Assuming one nerve impulse must end before another...Ch. 1 - About how many floating-point operations can a...Ch. 1 - Roughly how many floating-point operations can a...Ch. 1 - The following times are given using metric...Ch. 1 - The following times are given in seconds. Use...Ch. 1 - The following lengths are given using metric...Ch. 1 - The following lengths are given in meters. Use...Ch. 1 - The following masses are written using metric...Ch. 1 - The following masses are given in kilograms. Use...Ch. 1 - The volume of Earth is on the order of 1021m3 ....Ch. 1 - The speed limit on some interstate highways is...Ch. 1 - A car is traveling at a speed of 33 m/s. (a) What...Ch. 1 - In SI units, speeds are measured in meters per...Ch. 1 - American football is played on a 100-yd-long...Ch. 1 - Soccer fields vary in size. A large soccer field...Ch. 1 - What is the height in meters of a person who is...Ch. 1 - Mount Everest, at 29,028ft , is the tallest...Ch. 1 - The speed of sound is measured to be 342 m/s on a...Ch. 1 - Tectonic plates are large segments of Earth’s mist...Ch. 1 - The average distance between Earth and the Sun is...Ch. 1 - The density of nuclear matter is about 1018kg/m3 ....Ch. 1 - The density of aluminum Is 2.7g/cm3 . What is the...Ch. 1 - A commonly used turn of mass in the English system...Ch. 1 - A furlong is 220 yd. A fortnight is 2 weeks....Ch. 1 - It takes 2 radians (rad) to get around a circle,...Ch. 1 - Light travels a distance of about 3108m/s . A...Ch. 1 - A light-nanosecond is the distance light travels...Ch. 1 - An electron has a mass of 9.1110-31kg . A proton...Ch. 1 - A fluid ounce is about 30mL. What is the voIume of...Ch. 1 - A student is trying to remember some formulas from...Ch. 1 - Consider the physical quantities s,v,a, and t with...Ch. 1 - Consider the physical quantities m,s,v,a, and t...Ch. 1 - Suppose quantity s is a length and quantity t is a...Ch. 1 - Suppose [V]=L3,[]=ML3, and [t]=T . (a) What is the...Ch. 1 - The arc length formula says the length sof arc...Ch. 1 - Estimates and Fermi Calculations Assuming the...Ch. 1 - Assuming the human body is primarily made of...Ch. 1 - Estimate the mass of air in a classroom.Ch. 1 - Estimate the number of molecules that make up...Ch. 1 - Estimate the surface area of a person.Ch. 1 - Roughly how many solar systems would it take to...Ch. 1 - (a) Estimate the density of the Moon. (b) Estimate...Ch. 1 - The average density of the Sun is on the order...Ch. 1 - Estimate the mass of a virus.Ch. 1 - A floating-point operation is a single arithmetic...Ch. 1 - Consider the equation 4000/400=10.0 . Assuming the...Ch. 1 - Suppose your bathroom scale reads your mass as 65...Ch. 1 - A good-quality measuring tape can be off by 0.50cm...Ch. 1 - An infant’s pulse rate is measured to be 1305...Ch. 1 - (a) Suppose that a person has an average heart...Ch. 1 - A can contains 375 mL of soda. How much is left...Ch. 1 - State how many significant figures are proper In...Ch. 1 - (a) How many significant figures are in the...Ch. 1 - (a) If your speedometer has an uncertainty of 2.0...Ch. 1 - (a) A person’s blood pressure is measured to be...Ch. 1 - A person measures his or her heart rate by...Ch. 1 - What is the area of a circle 3.102 cm in diameter?Ch. 1 - Determine the number of significant figures in the...Ch. 1 - Perform the following calculations and express...Ch. 1 - Consider the equation y=mt+b, where the dimension...Ch. 1 - Consider the equation...Ch. 1 - (a) A car speedometer has a 5% uncertainty. What...Ch. 1 - A marathon runner completes a 42.188-km course in...Ch. 1 - The sides of a small rectangular box are measured...Ch. 1 - When nonmetric units we used in the United...Ch. 1 - The length and width of a rectangular room are...Ch. 1 - A car engine moves a piston with a circular...Ch. 1 - The first atomic bomb was detonated on July 16,...Ch. 1 - The purpose of this problem is to show the entire...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q1. What is the empirical formula of a compound with the molecular formula
Chemistry: A Molecular Approach (4th Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
Which coastal area experiences the smallest tidal range? ____________
Applications and Investigations in Earth Science (9th Edition)
Explain why 92% of 2,4-pemtanedione exists as the enol tautomer in hexane but only 15% of this compound exists ...
Organic Chemistry (8th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
33. Two lightbulbs are 1.0 m apart. From what distance can these lightbulbs be marginally resolved by a small t...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forward
- No chatgpt pls will upvotearrow_forward4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Introduction to Vectors and Their Operations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=KBSCMTYaH1s;License: Standard YouTube License, CC-BY