EBK MECHANICS OF MATERIALS
EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220102804487
Author: BEER
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 66RP

In the steel structure shown, a 6-mm-diameter pin is used at C and 10-mm-diameter pins are used at B and D. The ultimate shearing stress is 150 MPa at all connections, and the ultimate normal stress is 400 MPa in link BD. Knowing that a factor of safety of 3.0 is desired, determine the largest load P that can be applied at A. Note that link BD is not reinforced around the pin holes.

Fig. P1.66

Chapter 1, Problem 66RP, In the steel structure shown, a 6-mm-diameter pin is used at C and 10-mm-diameter pins are used at B

Expert Solution & Answer
Check Mark
To determine

The largest load P that can be applied at A.

Answer to Problem 66RP

The largest load P that can be applied at A is 1.683kN_.

Explanation of Solution

Given information:

The diameter of the pin at C is 6mm.

The diameter of the pin at B and D is 10mm.

The ultimate normal stress (τU) is 150MPa.

The ultimate normal stress (σU) is 400MPa

The factor of safety is 3.0.

Calculation:

Sketch the free body diagram of ABC as shown in Figure 1.

EBK MECHANICS OF MATERIALS, Chapter 1, Problem 66RP

Refer to Figure 1.

Taking moment about C.

Mc=0

0.280P0.120FBD=00.280P=0.120FBDP=0.42857FBD (1)

Taking moment about B

MB=0

0.160P0.120C=00.160P=0.120CP=0.75C (2)

Find the area of tension on net section of link BD using the relation:

Anet=dc(tdBD) (3)

Here, t is the thickness of the section, dc is the diameter of pin C, and dBD is diameter of pin at B and D.

Substitute 6mm for dc, 18mm for t, and 10mm for dBD in Equation (3).

Anet=6(1810)=48mm2(1m106mm)2=4.8×105m2

Find the force in member BD on net section of link BD using the relation:

FBD=σAnet (4)

Here, Anet is the area of tension on net section of link BD.

Modify Equation (4).

FBD=σUF.S.Anet (5)

Substitute 400MPa for σU, 3 for F.S., and 4.8×105m2 for Anet in Equation (5).

FBD=400MPa(106Pa1MPa)3×(4.8×105)=400×1063×(4.8×105)=6,400N

Find the area of shear in pins BD using the relation:

Apin=πd24 (6)

Substitute 10mm for d in Equation (6).

Apin=π(10)24=78.54mm2(1m2106mm2)=7.854×105m2

Find the force in member BD shear in pins BD using the relation:

FBD=τApin (7)

Here, Apin is the shear in pins at BD.

Modify Equation (7).

FBD=τUF.S.Apin (8)

Substitute 150MPa for τU, 3 for F.S., and 7.854×105m2 for Anet in Equation (8).

FBD=15400MPa(106Pa1MPa)3×(4.8×105)=150×1063×(7.8539×105)=3,926N

Select the smaller value of FBD is 3,926N.

Find the value of P as follows:

Substitute 3,926N for P in Equation (1).

P=0.428×3,926=1,682.5=1,683N(1kN103N)=1.683kN

Find the shear in pin at C using the relation:

Apin=πd24 (9)

Substitute 6mm for d in Equation (9).

Apin=π(6)24=28.27mm2(1m2106mm2)=2.8274×105m2

Find the value of C shear in pins C using the relation:

C=2τApin (10)

Here, Apin is the shear in pins at C.

Modify Equation (10).

C=2(τUF.S.)Apin (11)

Substitute 150MPa for τU, 3 for F.S., and 2.8274×105m2 for Anet in Equation (11).

C=2(150MPa(106Pa1MPa)3)×(2.8274×105)=2(150×1063)×(7.8539×105)=2,827N

Find the largest load P such that be applied at A.

Substitute 2,827N for C in Equation (2).

P=0.75×2,827=2,120N

Select the smaller value of P.

Thus, the largest load P such that be applied at A is 1.683kN_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اه
2 レ Tanism in which the link OA mm. O anticlockwise direction at 10 rad/s, the lengths of the various links are OA=75mm, OB=150mm, BC=150mm,CD=300mm. Determine for the position shown, the sliding velocity of D. A A Space Diagram o NT$ (Not-to-Scale) B # C か 750 x2.01 165 79622
Ashaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720

Chapter 1 Solutions

EBK MECHANICS OF MATERIALS

Ch. 1.2 - For the Pratt bridge truss and loading shown,...Ch. 1.2 - The frame shown consists of four wooden members,...Ch. 1.2 - An aircraft tow bar is positioned by means of a...Ch. 1.2 - Two hydraulic cylinders are used to control the...Ch. 1.2 - Determine the diameter of the largest circular...Ch. 1.2 - Two wooden planks, each 12 in. thick and 9 in....Ch. 1.2 - When the force P reached 1600 lb, the wooden...Ch. 1.2 - A load P is applied to a steel rod supported as...Ch. 1.2 - The axial force in the column supporting the...Ch. 1.2 - Three wooden planks are fastened together by a...Ch. 1.2 - A 40-kN axial load is applied to a short wooden...Ch. 1.2 - An axial load P is supported by a short W8 40...Ch. 1.2 - Link AB, of width b = 2 in. and thickness t=14...Ch. 1.2 - Determine the largest load P that can be applied...Ch. 1.2 - Knowing that = 40 and P = 9 kN, determine (a) the...Ch. 1.2 - The hydraulic cylinder CF, which partially...Ch. 1.2 - For the assembly and loading of Prob. 1.7,...Ch. 1.2 - Two identical linkage-and-hydraulic-cylinder...Ch. 1.5 - Two wooden members of uniform rectangular cross...Ch. 1.5 - Two wooden members of uniform rectangular cross...Ch. 1.5 - The 1.4-kip load P is supported by two wooden...Ch. 1.5 - Two wooden members of uniform cross section are...Ch. 1.5 - A centric load P is applied to the granite block...Ch. 1.5 - A 240-kip load P is applied to the granite block...Ch. 1.5 - A steel pipe of 400-mm outer diameter is...Ch. 1.5 - A steel pipe of 400-mm outer diameter is...Ch. 1.5 - A steel loop ABCD of length 5 ft and of 38-in....Ch. 1.5 - Link BC is 6 mm thick, has a width w = 25 mm, and...Ch. 1.5 - Link BC is 6 mm thick and is made of a steel with...Ch. 1.5 - Members AB and BC of the truss shown are made of...Ch. 1.5 - Members AB and BC of the truss shown are made of...Ch. 1.5 - Link AB is to be made of a steel for which the...Ch. 1.5 - Two wooden members are joined by plywood splice...Ch. 1.5 - For the joint and loading of Prob. 1.43, determine...Ch. 1.5 - Three 34-in.-diameter steel bolts are to be used...Ch. 1.5 - Three steel bolts are to be used to attach the...Ch. 1.5 - A load P is supported as shown by a steel pin that...Ch. 1.5 - A load P is supported as shown by a steel pin that...Ch. 1.5 - A steel plate 14 in. thick is embedded in a...Ch. 1.5 - Determine the factor of safety for the cable...Ch. 1.5 - Link AC is made of a steel with a 65-ksi ultimate...Ch. 1.5 - Solve Prob. 1.51, assuming that the structure has...Ch. 1.5 - Each of the two vertical links CF connecting the...Ch. 1.5 - Solve Prob. 1.53, assuming that the pins at C and...Ch. 1.5 - In the structure shown, an 8-mm-diameter pin is...Ch. 1.5 - In an alternative design for the structure of...Ch. 1.5 - Prob. 57PCh. 1.5 - The Load and Resistance Factor Design method is to...Ch. 1 - In the marine crane shown, link CD is known to...Ch. 1 - Two horizontal 5-kip forces are applied to pin B...Ch. 1 - For the assembly and loading of Prob. 1.60,...Ch. 1 - Two steel plates are to be held together by means...Ch. 1 - A couple M of magnitude 1500 N m is applied to...Ch. 1 - Knowing that link DE is 18 in. thick and 1 in....Ch. 1 - A 58-in.-diameter steel rod AB is fitted to a...Ch. 1 - In the steel structure shown, a 6-mm-diameter pin...Ch. 1 - Prob. 67RPCh. 1 - A force P is applied as shown to a steel...Ch. 1 - The two portions of member AB are glued together...Ch. 1 - The two portions of member AB are glued together...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY