FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 63P
One J/kg is equal to
(a)
(b)
(c)
(d)
(e)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A bar of length L and of a circular cross-section of diameter D is clamped at the top end and loaded at the other (bottom) end by a point load P as shown in Figure
Q2a. The cross-section of the bar is shown in Figure Q2b indicating that load is applied at the point A. The material used in the bar has specific weight y.
Find the magnitude and location of the maximum normal stress in the bar.
Z
Figure Q2 a
Figure Q2 b
45°
A
A close end tube of thin-walled circular section may be subjected to torque Tand internal pressure P, as shown in Figure Q3. The shear stress in the wall caused by
the torque can be calculated as T = T/(2πR²t), where the mean radius of the cross section is R(i.e., the radius of the centreline of the wall) and the wall thickness
is t. The internal radius of the tube can be calculated as (R-t/2). However, as R>>t, you can approximately assume that the internal radius of the tube is equal to Rin
the subsequent calculation. The tube is made from a material with Young's modulus E, Poisson's ratio v.
T
Centreline of
the wall
R
P
Ozz
бөө
Orr
Z
бут
бее
Ozz
Figure Q3
(a) If the change of the diameter cannot exceed 0.1 m under elastic deformation, calculate the minimum allowable wall thickness of the cylindrical pressure vessel if
P=23.6 MPa, T=0 KN.m, R = 2 m, Young's modulus E = 246 GPa, and Poisson's ratio v = 0.21.
Step-1
the functional relationships between hoop stress σ and wall thickness…
A cantilever beam of a channel section and length L is loaded by a point load W applied at half-length of the beam through the centroid of the section, as shown in Figure Q1. The material of the beam is aluminum alloy with the Young’s modulus of E .
Chapter 1 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 1 - What is a fluid? How does it differ from a solid?...Ch. 1 - Define internal, external, and open-channel flows.Ch. 1 - Define incompressible flow and in compressible...Ch. 1 - Consider the flow of air over the wings of an...Ch. 1 - What is forced flow? How does it differ from...Ch. 1 - How is the Mach number of a flow defined? That...Ch. 1 - When an airplane is flying at a constant speed...Ch. 1 - Consider the flow of air at a Mach number of 0.12....Ch. 1 - What is the no-slip condition? What causes it?Ch. 1 - What is a boundary layer? What causes a boundary...
Ch. 1 - What is a steady-flow process?Ch. 1 - Define stress, normal stress, shear stress, and...Ch. 1 - What are system, surroundings, and boundary?Ch. 1 - When analyzing the acceleration of gases as they...Ch. 1 - When is a system a closed system, and when is it a...Ch. 1 - You are to understand how a reciprocating air...Ch. 1 - What is the difference between pound-mass and...Ch. 1 - In a news ankle, is stated that a recently...Ch. 1 - Explain why the light-year has the dimension of...Ch. 1 - What is the net force acting on a car cruising at...Ch. 1 - A man goes to a traditional market to buy a steak...Ch. 1 - What is the weight, in N, of an object with a mass...Ch. 1 - What is the weight of a 1-kg substance in N,...Ch. 1 - Determine the mass and the weight of the air...Ch. 1 - A 3-kW resistance heater a water beater...Ch. 1 - A195-Ibm astronaut took his bathroom scale (a...Ch. 1 - The acceleration of high-speed aircraft sometimes...Ch. 1 - A 10-kg rock is thrown upward with a force of 280...Ch. 1 - The value of the gravitational acceleration g...Ch. 1 - At 45° latitude: the gravitational acceleration as...Ch. 1 - 1-32 The gravitational constant g is 9.807m/s2 at...Ch. 1 - On average, an adult person breathes in about 7.0...Ch. 1 - While solving a problem, a person ends up with...Ch. 1 - An airplane flies horizontally at 70m/s . Its...Ch. 1 - If the airplane of Prob. 1-35 weighs 17 lbf,...Ch. 1 - The boom of a fire truck raises a fireman (and his...Ch. 1 - A 6-kg plastic tank that has a volume of 0.18m3 is...Ch. 1 - Water at 15°C from a garden hose fills a 1.5 L...Ch. 1 - A forklift raises a 90.5 kg crate 1.80 m. (a)...Ch. 1 - The gas tank of a car is filled with a nozzle that...Ch. 1 - A pool of volume V (in m3) is to filled with water...Ch. 1 - Based on unit considerations alone, show that the...Ch. 1 - What is the importance of modeling in engineering?...Ch. 1 - What is the difference between the analytical and...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - What is the difference between precision and...Ch. 1 - How do the differential equations in the study of...Ch. 1 - What is the value of the engineering software...Ch. 1 - The weight of bodies may change somewhat from one...Ch. 1 - The reactive force developed by a jet to push an...Ch. 1 - An important design consideration in two-phase...Ch. 1 - Consider the flow of air through a wind turbine...Ch. 1 - A tank is filled with oil whose density is =850...Ch. 1 - If mass, heat, and work are not allowed to cross...Ch. 1 - The speed of an aircraft is given to be 260 m/s in...Ch. 1 - One J/kg is equal to (a) 1kPam3 (b) 1kNm/kg (c)...Ch. 1 - Which is a unit for power? (a) Btu (b) kwh (c)...Ch. 1 - The speed of an aircraft is given to be 950 km/h....Ch. 1 - The weight of a 10-kg mass at sea level is (a)...Ch. 1 - The weight of a 1 -Ibm mass is (a) 1Ibmft/s2 (b)...Ch. 1 - A hydroelectric power plant operates at its rated...Ch. 1 - Write an essay on the various mass- and...Ch. 1 - Search the Internet to find out how to properly...Ch. 1 - Another unit is kgf, which is a force unit used...Ch. 1 - Discuss why pressure tests of pressurized tanks...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A bar of length L and of a circular cross-section of diameter D is clamped at the top end and loaded at the other (bottom) end by a point load P as shown in Figure Q2a. The cross-section of the bar is shown in Figure Q2b indicating that load is applied at the point A. The material used in the bar has specific weight y. Find the magnitude and location of the maximum normal stress in the bar. Figure Q2 a Figure Q2 b 45°arrow_forwardQuestion2 The mission profile for a jet driven aircraft consists of the following segments: engine start and warm-up, taxi, take-off, climb to the cruise altitude of 35000 ft, descend to 10000 ft, one hour loiter at this altitude at 60% of the cruise speed, flight at loiter speed and altitude to an alternate airport (100 nm), descend to landing approach condition followed by the final landing, taxi and shutdown. The cruise Mach number is 0.8. No provisions are made for the reserved fuel or any trapped oil and fuel. The aircraft carries 200 people (including pilots and the cabin crew) at 175 lb each and 90 lb baggage each. This aircraft has a wing area of 2000 ft² a) If the landing stall speed of the aircraft is set at 100 kts corresponding to a landing weight of 0.85 Wro, and C(Lmax) Landing = 2.50, determine take-off weight and then calculate the range and empty weight of this aircraft (see Table Q2). Consider landing at sea level on a standard day. L/D at cruise L/D at 10000ft flight…arrow_forwardq Y X A ΕΙ L B Marrow_forward
- If L=3508 mm, W-9189 N, E=80 GPa, Determine the deflection at the free end of the beam. Step-1 The bend moment of the beam, M (Units: N.m), as a function of spatial coordinate X ( Units: m) can be described by Select one: O 1. M = 16117.506 +9189.000*X, for 0<=X<= L/2; M=0.00, for L/2< x <= L O 2. M = 16117506.000 - 9189.000*X, for 0<= x <= L/2; M = 9189.000* X, for L/2< x <= L O 3. M=16117.5069189.000*X, for 0<=X<= L/2; M=0.00, for L/2< x <= L O 4. M = 16117506.000 + 9189.000*X, for 0<=X<= L/2; M = 9189.000*X, for L/2arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forwardA close end tube of thin-walled circular section may be subjected to torque 7 and internal pressure P, as shown in Figure Q3. The shear stress in the wall caused by the torque can be calculated as T = T/(2πR²t), where the mean radius of the cross section is R (i.e., the radius of the centreline of the wall) and the wall thickness is t. The internal radius of the tube can be calculated as (R-t/2). However, as R>>t, you can approximately assume that the internal radius of the tube is equal to Rin the subsequent calculation. The tube is made from a material with Young's modulus E, Poisson's ratio v. Orr T t P Ozz бөө Orr Z T Ozz бед Figure Q3 Centreline of the wall R (a) If the change of the diameter cannot exceed 0.1 m under elastic deformation, calculate the minimum allowable wall thickness of the cylindrical pressure vessel if P=23.6 MPa, T=0 KN.m, R = 2 m, Young's modulus E = 246 GPa, and Poisson's ratio v = 0.21.arrow_forwardQuestion2 The mission profile for a jet driven aircraft consists of the following segments: engine start and warm-up, taxi, take-off, climb to the cruise altitude of 35000 ft, descend to 10000 ft, one hour loiter at this altitude at 60% of the cruise speed, flight at loiter speed and altitude to an alternate airport (100 nm), descend to landing approach condition followed by the final landing, taxi and shutdown. The cruise Mach number is 0.8. No provisions are made for the reserved fuel or any trapped oil and fuel. The aircraft carries 200 people (including pilots and the cabin crew) at 175 lb each and 90 lb baggage each. This aircraft has a wing area of 2000 ft² L/D at cruise L/D at 10000ft flight Table Q2 20 16 0.43 lb/hr/lb 0.50 lb/hr/lb C: Specific Fuel Consumption at cruise: C: Specific Fuel Consumption at 10000 ft flight: Weight ratios Engine Start and warm-up Taxi Take-off Climb Descent Landing, taxi and shutdown 0.992 0.996 0.996 0.996 0.992 0.992 Question 2 continues on the…arrow_forward[(a) If the change of the diameter cannot exceed 0.1 m under elastic deformation, calculate the minimum allowable wall thickness of the cylindrical pressure vessel. (P= 23.6 MPa, T=0 KN.m, R = 2 m, Young's modulus E = 246 GPa, and Poisson's ratio v = 0.21)] Step-4 The minimum allowable wall thickness of the cylindrical pressure vessel can be calculated as (Units: mm and rounded to three decimal places) Select one O 1.8.481 O 2.4.240 ○ 3.6.869 ○ 4. 16.961 5. 13.738 O 6.3.434arrow_forward[If L=3508 mm, W=9189 N, E=80 GPa, Determine the deflection at the free end of the beam.] Step -3 Which equation in the following choices most accurately represents the functional relationship between the value of the deflection v ( Units: mm) at half length (x =L/2) of the beam and the second moment of area about z-axis of the cross section, Izz ( Units: mm²): (Please note that " X = L/2" is the same as "X=L÷2".) Select one: O 1. v 588830960.433/Izz O 2. v=338836061.442/Izz O 3. v 119832265.632/Izz O 4. v 413214709.076/Izz O 5. v=287184222.808/Izz O 6. v=206607354.538/Izz O 7. v=66114353.452/Izz O 8. v 752050770.518/Izzarrow_forwardA bar of length L and of a circular cross-section of diameter D is clamped at the top end and loaded at the other (bottom) end by a point load P as shown in Figure Q2a. The cross-section of the bar is shown in Figure Q2b indicating that load is applied at the point A. The material used in the bar has specific weight y. Find the magnitude and location of the maximum normal stress in the bar. Figure Q2 a Figure Q2 b 45° A Step -1 The given load case can be represented by a statically equivalent system of the following loads Select one: O 1. A tensile force placed at the centroid with intensity equals to 0.354 P; a bending moment about zaxis, M₂ = (P×D× 0.708); a bending moment about yaxis, My= (Px D× 0.177); and self-weight of the vertical beam producing maximum tensile stress at the built-in end. ○ 2. A tensile force placed at the centroid with intensity equals to 0.354P; a bending moment about z axis, M₂ = (PxDx 0.354); a bending moment about yaxis, My= (Px D× 0.177); and self-weight…arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3. a) Calculate the static power and thrust coefficients.arrow_forwardA cantilever beam of a channel section and length L is loaded by a point load W applied at half-length of the beam through the centroid of the section, as shown in Figure Q1. The material of the beam is aluminum alloy with the Young's modulus of E. 1. As illustrated in Figure Q1, the Y-axis is positioned along the symmetric plane of the cross-section, while the Z-axis and X-axis pass through the centroid of the cross-section. The X-axis is defined using the right-hand rule, with the origin located at the fixed end. The distance from the centroid to the bottom of the cross- section, yc (Units: mm), is: Select one: O 1. 48.72 O 2. 70.24 ○ 3. 76.38 ○ 4. 83.12 O 5. 68.73 ○ 6. 50.26 ○ 7. 56.19 ○ 8. 88.73 ○ 9. 62.82 O 10. 42.83 W a a 25 mm y Z AN a-a 25 mm 150 mm SC yc 6 mm Figure Q 1 200 mmarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY