FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 49CP
What is the value of the engineering software packages in (a) engineering education and (b) engineering practice?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
100
As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the
spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a
damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is
subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in
a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement:
• Analytically (hand calculations)
Creating Simulink Model
Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph
for the first 15 sec. The graph must be fully formatted by code.
Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set
in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its
equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and
k₂ = 2 N/m.
(y₁ = 0)
www
k₁ = 3
Jm₁ = 1
k2=2
www
(Net change in
spring length
=32-31)
(y₂ = 0)
m₂ = 1
32
32
System in
static
equilibrium
System in
motion
Figure Q3 - Coupled mass-spring system
Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Produce an animation of the system for all solutions for the first minute.
Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank
A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each
tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of
6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If,
initially, tank A contains pure water and tank B contains 20 kg of salt.
A
6 L/min
0.2 kg/L
x(t)
100 L
4 L/min
x(0) = 0 kg
3 L/min
1 L/min
B
y(t)
100 L
y(0) = 20 kg
2 L/min
Figure Q1 - Mixing problem for interconnected tanks
Determine the mass of salt in each tank at time t≥ 0:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.
Chapter 1 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 1 - What is a fluid? How does it differ from a solid?...Ch. 1 - Define internal, external, and open-channel flows.Ch. 1 - Define incompressible flow and in compressible...Ch. 1 - Consider the flow of air over the wings of an...Ch. 1 - What is forced flow? How does it differ from...Ch. 1 - How is the Mach number of a flow defined? That...Ch. 1 - When an airplane is flying at a constant speed...Ch. 1 - Consider the flow of air at a Mach number of 0.12....Ch. 1 - What is the no-slip condition? What causes it?Ch. 1 - What is a boundary layer? What causes a boundary...
Ch. 1 - What is a steady-flow process?Ch. 1 - Define stress, normal stress, shear stress, and...Ch. 1 - What are system, surroundings, and boundary?Ch. 1 - When analyzing the acceleration of gases as they...Ch. 1 - When is a system a closed system, and when is it a...Ch. 1 - You are to understand how a reciprocating air...Ch. 1 - What is the difference between pound-mass and...Ch. 1 - In a news ankle, is stated that a recently...Ch. 1 - Explain why the light-year has the dimension of...Ch. 1 - What is the net force acting on a car cruising at...Ch. 1 - A man goes to a traditional market to buy a steak...Ch. 1 - What is the weight, in N, of an object with a mass...Ch. 1 - What is the weight of a 1-kg substance in N,...Ch. 1 - Determine the mass and the weight of the air...Ch. 1 - A 3-kW resistance heater a water beater...Ch. 1 - A195-Ibm astronaut took his bathroom scale (a...Ch. 1 - The acceleration of high-speed aircraft sometimes...Ch. 1 - A 10-kg rock is thrown upward with a force of 280...Ch. 1 - The value of the gravitational acceleration g...Ch. 1 - At 45° latitude: the gravitational acceleration as...Ch. 1 - 1-32 The gravitational constant g is 9.807m/s2 at...Ch. 1 - On average, an adult person breathes in about 7.0...Ch. 1 - While solving a problem, a person ends up with...Ch. 1 - An airplane flies horizontally at 70m/s . Its...Ch. 1 - If the airplane of Prob. 1-35 weighs 17 lbf,...Ch. 1 - The boom of a fire truck raises a fireman (and his...Ch. 1 - A 6-kg plastic tank that has a volume of 0.18m3 is...Ch. 1 - Water at 15°C from a garden hose fills a 1.5 L...Ch. 1 - A forklift raises a 90.5 kg crate 1.80 m. (a)...Ch. 1 - The gas tank of a car is filled with a nozzle that...Ch. 1 - A pool of volume V (in m3) is to filled with water...Ch. 1 - Based on unit considerations alone, show that the...Ch. 1 - What is the importance of modeling in engineering?...Ch. 1 - What is the difference between the analytical and...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - What is the difference between precision and...Ch. 1 - How do the differential equations in the study of...Ch. 1 - What is the value of the engineering software...Ch. 1 - The weight of bodies may change somewhat from one...Ch. 1 - The reactive force developed by a jet to push an...Ch. 1 - An important design consideration in two-phase...Ch. 1 - Consider the flow of air through a wind turbine...Ch. 1 - A tank is filled with oil whose density is =850...Ch. 1 - If mass, heat, and work are not allowed to cross...Ch. 1 - The speed of an aircraft is given to be 260 m/s in...Ch. 1 - One J/kg is equal to (a) 1kPam3 (b) 1kNm/kg (c)...Ch. 1 - Which is a unit for power? (a) Btu (b) kwh (c)...Ch. 1 - The speed of an aircraft is given to be 950 km/h....Ch. 1 - The weight of a 10-kg mass at sea level is (a)...Ch. 1 - The weight of a 1 -Ibm mass is (a) 1Ibmft/s2 (b)...Ch. 1 - A hydroelectric power plant operates at its rated...Ch. 1 - Write an essay on the various mass- and...Ch. 1 - Search the Internet to find out how to properly...Ch. 1 - Another unit is kgf, which is a force unit used...Ch. 1 - Discuss why pressure tests of pressurized tanks...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forwardDescribe the following HVAC systems. a) All-air systems b) All-water systems c) Air-water systems Graphically represent each system with a sketch.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward
- ased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardThe answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forwardI need expert handwritten solutions to this onlyarrow_forward
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forward
- this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forwardPlease answer with the sketches.arrow_forwardThe beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Quality Control and Quality Assurance; Author: AISC Education;https://www.youtube.com/watch?v=C2PFj9YZ_mw;License: Standard Youtube License