To choose: the correct inequality to represent the given graph.
The correct inequality to represent the given graph is B.
Given information:
The given inequality are
A
B
C
D.
The given graph of the quadratic inequality is
Formula used:
Standard equation of a parabola is of the form
If a quadratic inequality is less than or greater than type then the outline of the parabola is a dashed line.
If a quadratic inequality is less than equal to or greater than equal to type then the outline of the parabola is a solid line.
If
If
Calculation:
The outline of the parabola is a solid line.
So, the inequality is greater than equal to type.
The vertex is at
Now, check for
Now, check for
Here,
The parabola is open upwards
Now, take
Which is false.
So, the parabola is satisfied by
The shaded region will be inside and the outline of the parabola.
The parabola is open upwards as
The correct inequality to represent the given graph is
Chapter 1 Solutions
Holt Mcdougal Larson Algebra 2: Student Edition 2012
- 2/26 Delta Math | Schoology X Unit 4: Importance of Education X Speech at the United Nations b x Book Thief Part 7 Summaries x + > CA Materials pdsd.schoology.com/external_tool/3157780380/launch ☆ MC Updates Grades Members BrainPOP Canva for Education DeltaMath Discovery Education FactCite Gale In Context: High Sc. Graw McGraw Hill K-12 SSO Draw a line representing the "rise" and a line representing the "run" of the line. State the slope of the line in simplest form. Click twice to plot each segment. Click a segment to delete it. 10 9 8 5 сл y Hill Nearpod 3 2 Newsela -10 -9 -8 -7 b -5 -4-3-2 -1 1 23 4 5 b 7 89 10 Scholastic Digital Mana. World Book Online Information Grading periods MP3: 2025-01-25-2025-03- 31, MP4: 2025-04-01-2025- 06-13 ← 2 M -> C % 95 54 # m e 4 7 巴 DELL A t y & * ) 7 8 9 . i L Feb 27 12:19 US + 11arrow_forwardLet & be linear map from as Pacex into aspace and {X1, X2, – 1— x3 basis for x show that f a one-to-one isf {f(x1), f (xx); — F (Kn) } linearly independent. மம் let M be a Proper sub space of aspace X then M is ahyper space iff for any text&M X=. C) let X be a linear space and fe X1{0} Show that is bjective or not and why? ***********arrow_forwardQ₁/(a) Let S and T be subsets of a vector space X over a field F such that SCT,show that whether (1) if S generate X then T generate X or not. (2) if T generate X then S generate X or not. (b) Let X be a vector space over a field F and A,B are subsets of X such that A is convex set and B is affine set, show that whether AnB is convex set or not, and if f be a function from X into a space Y then f(B) is an affine set or not. /(a) Let M and N be two hyperspaces of a space X write a condition to prove MUN is a hyperspace of X and condition to get that MUN is not hyperspace of X. Write with prove application n Panach theoremarrow_forward
- Match the division problem on the left with the correct quotient on the left. Note that the denominators of the reminders are omitted and replaced with R. 1) (k3-10k²+k+1) ÷ (k − 1) 2) (k4-4k-28k45k+26)+(k+7) 3) (20k+222-7k+7)+(5k-2) 4) (3+63-15k +32k-25)+(k+4) 5) (317k 13) ÷ (k+4) - 6) (k-k+8k+5)+(k+1) 7) (4-12k+6) + (k-3) 8) (3k+4k3 + 15k + 10) ÷ (3k+4) A) 3k3-6k29k - 4 B) 4k2 + 6 R 7 C)²-9k-8- R D) 4k2+6x+1+ E) 10 Elk³-5-12 R 9 F) k² - 4k R 9 R G) k3-3k2-7k+4 H) k³-k²+8 - 3 R - R 9 Rarrow_forwardAnswer choices are: 35 7 -324 4 -9 19494 5 684 3 -17 -3 20 81 15 8 -1 185193arrow_forwardlearn.edgenuity : C&C VIP Unit Test Unit Test Review Active 1 2 3 4 Which statement is true about the graph of the equation y = csc¯¹(x)? There is a horizontal asymptote at y = 0. उद There is a horizontal asymptote at y = 2. There is a vertical asymptote at x = 0. O There is a vertical asymptote at x=- R Mark this and return C Save and Exit emiarrow_forward
- ے ملزمة احمد Q (a) Let f be a linear map from a space X into a space Y and (X1,X2,...,xn) basis for X, show that fis one-to- one iff (f(x1),f(x2),...,f(x) } linearly independent. (b) Let X= {ao+ax₁+a2x2+...+anxn, a;ER} be a vector space over R, write with prove a hyperspace and a hyperplane of X. مبر خد احمد Q₂ (a) Let M be a subspace of a vector space X, and A= {fex/ f(x)=0, x E M ), show that whether A is convex set or not, affine set or not. Write with prove an application of Hahn-Banach theorem. Show that every singleton set in a normed space X is closed and any finite set in X is closed (14M)arrow_forwardLet M be a proper subspace of a finite dimension vector space X over a field F show that whether: (1) If S is a base for M then S base for X or not, (2) If T base for X then base for M or not. (b) Let X-P₂(x) be a vector space over polynomials a field of real numbers R, write with L prove convex subset of X and hyperspace of X. Q₂/ (a) Let X-R³ be a vector space over a over a field of real numbers R and A=((a,b,o), a,bE R), A is a subspace of X, let g be a function from A into R such that gla,b,o)-a, gEA, find fe X such that g(t)=f(t), tEA. (b) Let M be a non-empty subset of a space X, show that M is a hyperplane of X iff there Xiff there exists fE X/10) and tE F such that M=(xE X/ f(x)=t). (c) Show that the relation equivalent is an equivalence relation on set of norms on a space X.arrow_forwardQ/(a)Let X be a finite dimension vector space over a field F and S₁,S2CX such that S₁SS2. Show that whether (1) if S, is a base for X then base for X or not (2) if S2 is a base for X then S, is a base for X or not (b) Show that every subspace of vector space is convex and affine set but the conevrse need not to be true. allet M be a non-empty subset of a vector space X over a field F and x,EX. Show that M is a hyperspace iff xo+ M is a hyperplane and xo€ xo+M. bState Hahn-Banach theorem and write with prove an application about it. Show that every singleten subset and finite subset of a normed space is closed. Oxfallet f he a function from a normad roace YI Show tha ir continuour aty.GYiffarrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





