EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 51QTP
(a)
To determine
Calculate the radius of atom for Aluminum (atomic weight is
(b)
To determine
Calculate the radius of atom for tungsten (atomic weight
(c)
To determine
Calculate the radius of atom for magnesium (atomic weight is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Vanadium (V) has a BCC crystal structure. The atomic radius is R = 0.132 nm and the atomic mass is M = 50.94 g/mole.
What is the density of Vanadium in g/mm3?
Given:
Avogadro’s Number NA = 0.6023 × 1024 (atoms/mole)
Select one:
a. 1.5
b. 0.021
c. 0.011
d. 0.0087
e. 0.00597
Vanadium (V) has a BCC crystal structure. The atomic radius is R = 0.132 nm and the atomic mass is M = 50.94 g/mole.
What is the density of Vanadium in g/mm ?
Given:
Avogadro's Number NA = 0.6023 x
1024
(atoms/mole)
Select one:
O a, 0.021
O b. 0.011
Oc.1.5
d. 0.0087
e. 0.00597
Potassium (K) has the Body-Centered Cubic (BC) crystal structune. The edge length is a = 0.533 nm.
What is the linear density in atoms/nm along direction (01112
Select one:
O ENG
O O 0 00
Calculate the theoretical density of NiO, given that it has the rock salt crystal structure. You may want to use the table below. The
atomic weights for Ni and O are 58.69 g/mol and 16.00 g/mol, respectively.
Ionic Radius (nm)
P =
i
Cation
Fe²+
Ni²+
Mg2+
Mn2+
g/cm³
0.077
0.069
0.072
0.067
Anion
0²-
S²-
Ionic Radius (nm)
0.140
0.184
Chapter 1 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 1 - What is the difference between an atom and a...Ch. 1 - Prob. 2RQCh. 1 - Prob. 3RQCh. 1 - Prob. 4RQCh. 1 - Define anisotropy. What is its significance?Ch. 1 - What effects does recrystallization have on the...Ch. 1 - What is strain hardening, and what effects does it...Ch. 1 - Explain what is meant by structure-sensitive and...Ch. 1 - Prob. 9RQCh. 1 - What influence does grain size have on the...
Ch. 1 - What is the relationship between the nucleation...Ch. 1 - What is a slip system, and what is its...Ch. 1 - Explain the difference between recovery and...Ch. 1 - What is hot shortness, and what is its...Ch. 1 - Explain the advantages and limitations of cold,...Ch. 1 - Describe what the orange peel effect is. Explain...Ch. 1 - Some metals, such as lead, do not become stronger...Ch. 1 - Describe the difference between preferred...Ch. 1 - Differentiate between stress relaxation and stress...Ch. 1 - What is twinning? How does it differ from slip?Ch. 1 - Prob. 21QLPCh. 1 - What is the significance of the fact that some...Ch. 1 - Is it possible for two pieces of the same metal to...Ch. 1 - Prob. 24QLPCh. 1 - A cold-worked piece of metal has been...Ch. 1 - What materials and structures can you think of...Ch. 1 - Two parts have been made of the same material, but...Ch. 1 - Do you think it might be important to know whether...Ch. 1 - Explain why the strength of a polycrystalline...Ch. 1 - Describe the technique you would use to reduce the...Ch. 1 - What is the significance of the fact that such...Ch. 1 - Prob. 32QLPCh. 1 - It has been noted that the more a metal has been...Ch. 1 - Is it possible to cold work a metal at...Ch. 1 - Comment on your observations regarding Fig. 1.14.Ch. 1 - Is it possible for a metal to be completely...Ch. 1 - Prob. 37QTPCh. 1 - Prob. 38QTPCh. 1 - Plot the data given in Table 1.1 in terms of...Ch. 1 - A strip of metal is reduced from 30 mm in...Ch. 1 - Prob. 41QTPCh. 1 - How many grains are there on the surface of the...Ch. 1 - Prob. 43QTPCh. 1 - Prob. 44QTPCh. 1 - Prob. 45QTPCh. 1 - A technician determines that the grain size of a...Ch. 1 - If the diameter of the aluminum atom is 0.28 nm,...Ch. 1 - The following data are obtained in tension tests...Ch. 1 - Prob. 50QTPCh. 1 - Prob. 51QTPCh. 1 - Prob. 52QTPCh. 1 - Same as Prob. 1.39, but ASTM no. versus...Ch. 1 - By stretching a thin strip of polished metal, as...Ch. 1 - Draw some analogies to mechanical fiberingfor...Ch. 1 - Draw some analogies to the phenomenon of hot...Ch. 1 - Take a deck of playing cards, place a rubber band...Ch. 1 - Give examples in which anisotropy is scale...Ch. 1 - The movement of an edge dislocation was described...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Sodium chloride (NaCl) has the rock salt crystal structure and a density of 2.17 g/cm³. The atomic weights of sodium and chlorine are 22.99 g/mol and 35.45 g/mol, respectively. (a) Determine the unit cell edge length. nm (b) Determine the unit cell edge length from the radii in the table below assuming that the Nat and Cl- ions just touch each other along the edges. nm Cation Mg2+ Fe2+ Na+ Ionic Radius (nm) 0.072 0.077 0.102 Anion Ionic Radius (nm) CI- 0²- 0.181 0.140arrow_forwardIron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol. Compute its theoretical density and compare with its experimental density, which is 7.87 g/cm3. Which one is higher? O Experimental density is higher. O Not enough information to compute the theoretical density. O Theoretical density is higher. O Neither. Both are equal.arrow_forwardConsider two hypothetical metallic crystal structures A and B. A has an fcc and B a bcc lattice structure. Both have the same unit cell volume. The Atomic Packing Factor for A is 0.740 and that for B is 0.680. What is the ratio of the fcc to bcc atomic radii? (This question has only one correct answer) a. 0.82 b. 0.63 c. 0.92 d. 0.44 e. 1.21 Clear my choicearrow_forward
- 5. Calculate theoretical density of Cu (FCC) and Fe (BCC). Compare your results with measured density of Cu and Iron (Density of Cu-8.93 g/cm³, Density of Fe= 7.87 g/cm³). Elaborate on differences between the calculated and measured ones (if any). a. Atomic radius of Cu=1.278 Å, Atomic mass of Cu=63.5 g/mol b. Atomic radius of Fe=1.241 Å, Atomic mass of Fe=55.8 g/molarrow_forwardA hypothetical metal has the BCC crystal structure, a density of 7.24 g/cm, and an atomic weight of 48.9 g/mol. Please calculate the atomic radius of this metal. Some useful equations are provided below. a= 2R/2 a = 2R3 !! nA VNA O 0.122 nm O 0.567 nm 0.745 nm 1.23 nmarrow_forwardA crime scene analyst found out a 10 mm thick metal plate was penetrated by 10 bullets that caused (c) a severe but clean volumetric defect in the form of 10 holes with a diameter of 10 mm each. If the theoretical density of the metal plate is 10 g/cm³, how many metal atoms have been removed from the plate due to the impact? Assume a solid structured metal, with an atomic weight of 100 g/mol, Given the Avogadro constant as 6 x 1023 atom/mol and a = 3.14.arrow_forward
- Scandium (Sc) has the FCC crystal structure. The atomic radius is R = 0.16 nm and the atomic mass is M = %3D 44.96 g/mole. What is the density of Scandium in g/cm3? Given: Avogadro's Number NA = 0.6023 × 1024 (atoms/mole) %3D Select one: a. 12.14 b. 5.30 c. 12.55 d, 3.22 e. 6.77arrow_forwardHi, I have a materials engineering question.arrow_forwardSome hypothetical alloy is composed of 25 wt% of metal A and 75 wt% of metal B. If the densities of metals A and b are 6.17 and 8.00 g/cm^3 respectively, whereas their respective atomic weights are 171.3 g/mol and 162 g/mol respectively, determine the crystalline structure of the alloy assuming a unit cell edge length of 0.332 nm.arrow_forward
- O h. 0.74 Silver (Ag) has the FCC crystal structure. The atomic radius is R = 0.144 nm and the atomic mass is M = 107.87 g/mole. What is the density of Silver in g/m? Given: Avogadro's Number NA = 0.6023 x 1024 (atoms/mole) Select one: a. 10.6x106 O b. 10.6×105 O c. 10.6×10 O d. 10.60 O e. 10.6x10 Chromium (Cr) has the Boody-Centered Cubic (BCC) crystal structure. The edge length is a= 0.288 nm. What is the linear density in atoms/nm along direction (111P Select one: 9:12 PM O a. 7.48 O O e 4) A ENG 15-Apr-2021arrow_forwardConsider two hypothetical metallic crystal structures A and b has an fcc and B a bcc lattice structure. Both have the same unit cell volume. The atomic packing factor for a is 0.740 and that for b is 0.680. what is the ratio of the fcc to bcc atomic radii? Select one of the answers below. a. 0.63 b. 0.82 c. 1.21 d. 0.92 e. 0.44arrow_forwardA number of elements along with their crystal structures and atomic radii are listed in the following table. Which pairs might be expected to have complete solid solubility in each other? Crystal Atomic Crystal Structure Atomic Structure radius (nm) radius (nm) Silver Palladium FCC 0.144 Lead FCC 0.175 FCC 0.137 0.137 Tungsten Rhodium ВСС Copper Gold FCC 0.128 FCC 0.134 Platinum Tantalum FCC 0.144 FCC 0.138 Nickel FCC 0.125 ВСС 0.143 Aluminum Sodium FCC 0.143 Potassium ВСС 0.231 ВСС 0.185 Molybdenum ВСС 0.136arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY