Study Guide for Chemistry: The Central Science
14th Edition
ISBN: 9780134554075
Author: Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus, James C. Hill
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 4E
Consider the two spheres shown here, one made of silver and the other of aluminum.
- What is the mass of each sphere in kg?
- The force of gravity acting on an object is F = mg, where m is the mass of an object and g is the acceleration of gravity (9.8 m/s2). How much work do you do on each sphere it you raise it from the floor to a height of 2.2 m?
- Does the act of lifting the sphere off the ground increase the potential energy of the aluminum sphere by a larger, smaller, or same amount as the silver sphere?
- If you release the spheres simultaneously, they will have the same velocity when they hit the ground. Will they have the same kinetic energy? If not, which sphere will have more kinetic energy? [Section 1.4 Q]
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule04:21
Students have asked these similar questions
Consider the two spheres shown here, one made of
silver and the other of aluminum. The spheres are
dropped from a height of 1.7 m.
Composition - aluminum
Density= 2.70 g/cm³
Volume 196 cm³
Composition - silver
Density 10.49 g/cm³
Volume=196 cm³
What is the kinetic energy of the silver sphere at the moment it hits the ground? (Assume that energy is
conserved during the fall and that 100%% of the sphere's initial potential energy is converted to kinetic
energy the time impact occurs.)
Express your answer to two significant figures and include the appropriate units.
Ek =
Value
Units
Expressing amounts of energy in different energy units is necessary to solve many chemistry problems. For practice, complete the following
table.
The Joule (J) is the SI unit of energy.
1 calorie (cal) 4.184)
1 kWh = 3.600 x 105
3
245
kWh
200
kcal
338
Expressing amounts of energy in different energy units is necessary to solve many chemistry problems. For practice, complete the following table.
The Joule (J) is the SI unit of energy.
The calorie (cal) is the amount of energy needed to raise the temperature of 1 g of water by 1°C, 1 cal = 4.184)
The British Thermal Unit (BTU) is the amount of energy needed to raise the temperature of 1 pound of water by 1°F. 1 BTU - 1055J
BTU
7.67
kJ
0.463
kcal
0.181
Chapter 1 Solutions
Study Guide for Chemistry: The Central Science
Ch. 1.2 - Practice Exercise 1 Which of the following is the...Ch. 1.2 - Aspirin is composed of 60.0% carbon, 4.5%...Ch. 1.5 - Practice Exercise 1 Which of the following weights...Ch. 1.5 - Practice Exercise 2 How many picometers are there...Ch. 1.5 - Practice Exercise 1 Using Wolfram Alpha...Ch. 1.5 - Practice Exercise 2 Ethylene glycol, the major...Ch. 1.5 - Practice Exercise 1 Platinum, Pt. is one of the...Ch. 1.5 - Practice Exercise 2 Calculate the density of a...Ch. 1.5 - Which of the following objects has the greatest...Ch. 1.5 - Prob. 1.5.2PE
Ch. 1.6 - Which of the following numbers in your personal...Ch. 1.6 - Practice Exercise 2 The back inside cover of the...Ch. 1.6 - Practice Exercise 1 An object is determined to...Ch. 1.6 - Practice Exercise 2 How many significant figures...Ch. 1.6 - Ellen recently purchased a new hybrid car and...Ch. 1.6 - Practice Exercise 2 It takes 10.5 s for a sprinter...Ch. 1.6 - Practice Exercise 1 You are asked to determine the...Ch. 1.6 - Practice Exercise 1 At a particular instant in...Ch. 1.7 - Practice Exercise 2 By using a conversion factor...Ch. 1.7 - Practice Exercise 1 Fabiola, who lives in Mexico...Ch. 1.7 - Practice Exercise 2 A car travels 28 mi per gallon...Ch. 1.7 - Practice Exercise 2 A car travels 28 mi per gallon...Ch. 1.7 - Practice Exercise 2 The surface area of Earth is...Ch. 1.7 - Practice Exercise 1 Composite decking is a...Ch. 1.7 - Practice Exercise 2 The density of the organic...Ch. 1.7 - Practice Exercise 2 If the mass of the container...Ch. 1 - Prob. 1ECh. 1 - Prob. 2ECh. 1 - Musical instruments like trumpets and trombones...Ch. 1 - Consider the two spheres shown here, one made of...Ch. 1 - Is the separation method used in brewing a cup of...Ch. 1 - Identify each of the following as measurements of...Ch. 1 - Three spheres of equal size are composed of...Ch. 1 - The three targets from a rifle range shown below...Ch. 1 - What is the length of the pencil in the following...Ch. 1 - How many significant figures should be reported...Ch. 1 - Consider the jar of jelly beans in the photo. To...Ch. 1 - The photo below shows a picture of an agate stone....Ch. 1 - Classify each of the following as a pure substance...Ch. 1 - Classify each of the following as a pure substance...Ch. 1 - 1.15 Give the chemical symbol or name for the...Ch. 1 - 1.16 Give the chemical symbol or name for each of...Ch. 1 - A solid white substance A is heated strongly in...Ch. 1 - 1.18 You are hiking in the mountains and find a...Ch. 1 - 1.19 In the process of attempting to characterize...Ch. 1 - 1.20
Read the following description of the element...Ch. 1 - Prob. 21ECh. 1 - A match is lit and held under a cold piece of...Ch. 1 - Which separation method is better suited for...Ch. 1 - Two beakers contain clear, colorless liquids. When...Ch. 1 - Prob. 25ECh. 1 - Prob. 26ECh. 1 - Prob. 27ECh. 1 - Prob. 28ECh. 1 - Prob. 29ECh. 1 - Prob. 30ECh. 1 - 121 What exponential notation do the following...Ch. 1 -
1.32 Use appropriate metric prefixes to write the...Ch. 1 - Make the following conversions. 72 °F to °C, 216.7...Ch. 1 - a. The temperature on a warm summer day is 87 °F....Ch. 1 - Prob. 35ECh. 1 - A cube of osmium metal 1.500 cm on a side has a...Ch. 1 - To identify a liquid substance, a student...Ch. 1 - a. After the label fell off a bottle containing a...Ch. 1 - Prob. 39ECh. 1 -
1.40 Silicon for computer chips is grown in large...Ch. 1 - Prob. 41ECh. 1 - 1.42 A watt is a measure of power (the rate of...Ch. 1 - Indicate which of the following are exact numbers;...Ch. 1 - Indicate which of the following are exact numbers:...Ch. 1 - 1.45 What is the number of significant figures in...Ch. 1 - Indicate the number of significant figures in each...Ch. 1 - 1.47 Round each of the following numbers to four...Ch. 1 - 1.48
The diameter of Earth at the equator is 7926...Ch. 1 - Carry out the following operations and express the...Ch. 1 - Carry out the following operations and express the...Ch. 1 - You weigh an object on a balance and read the mass...Ch. 1 - You have a graduated cylinder that contains a...Ch. 1 - 153 Using your knowledge of metric units, English...Ch. 1 - 1.54 Using your knowledge of metric units, English...Ch. 1 - A bumblebee flies with a ground speed of 15.2 m/s....Ch. 1 - 1 56
a The speed of light in a vacuum is 2.998 x...Ch. 1 - Perform the following conversions: 5.00 days to s,...Ch. 1 - Carry out the following conversions: 0.105 in. to...Ch. 1 - How many liters of wine can be held in a wine...Ch. 1 - If an electric car is capable of going 225 km on a...Ch. 1 - The density of air at ordinary atmospheric...Ch. 1 - 1.62 The concentration of carbon monoxide in an...Ch. 1 - Prob. 63ECh. 1 - 1.64 A copper refinery produces a copper ingot...Ch. 1 - 165 Classify ea. al the folbwing as a pure...Ch. 1 - 1.66
Which is more likely to eventually be shown...Ch. 1 -
1.67 A sample of ascorbic acid (vitamin C) is...Ch. 1 - Prob. 68AECh. 1 - SO Two students deterrmne the percen.ge of lead in...Ch. 1 - 1.70
Is Om use of significant figures in ea. of...Ch. 1 - What type of quantity (for example, length,...Ch. 1 - 1.72 Give the derived SI units for each of the...Ch. 1 - 1.73 The distance from Earth to the Moon is...Ch. 1 - 1.74 Which of the following would you characterize...Ch. 1 -
1.75 The U.S. quarter has a mass of 5.67 g and is...Ch. 1 -
1.76 In the United States, water used for...Ch. 1 -
1.77 By using estimation techniques, determine...Ch. 1 - Suppose you decide to define your own temperature...Ch. 1 -
1.79 The liquid substances mercury (density =...Ch. 1 -
1.80 Two spheres of equal volume are placed on...Ch. 1 - Water has a density of 0.997 g/cm3 at 25C ; ice...Ch. 1 - A 32.65-g sample of a solid is placed in a flask....Ch. 1 - A thief plans to steal a gold sphere with a radius...Ch. 1 - Automobile batteries contain sulfuric acid, which...Ch. 1 - A 40-lb container of peat moss measures 14 x 20 x...Ch. 1 - A package of aluminum foil contains 50 ft2of foil,...Ch. 1 - Prob. 87AECh. 1 -
1.88 In 2005, J. Robin Warren and Barry J....Ch. 1 -
1 89 A 25 0-cm.long cylindrical glass tube,...Ch. 1 -
1.90 Gold is alloyed (mixed) with other metals to...Ch. 1 -
1.91 Paper chromatography is a simple but...Ch. 1 -
1.92 Judge the following statements as true or...Ch. 1 -
1.93 You are assigned the task of separating a...Ch. 1 - Prob. 94AE
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. Trails that are derived from a common ancestor, like the bones of human arms and bird wings, are said to be_...
Biological Science (6th Edition)
7. Jack and Jill ran up the hill at 3.0 m/s. The horizontal component of Jill’s velocity vector was 2.5 m/s.
a....
College Physics: A Strategic Approach (3rd Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
What is the difference in elevation between Points A and B? Difference in elevation: _____________feet
Applications and Investigations in Earth Science (9th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
55. For the reaction shown, find the limiting reactant for each of the initial quantities of reactants.
a.
b....
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 1-86 The specific heats of some elements at 25oC are as follows: aluminum = 0.215 cal/g · oC; carbon (graphite) = 0.170 caI/g oC; iron = 0.107 cal/g mercury = 0.033 1 caI/g oC. (a) Which element would require the smallest amount of heat to raise the temperature of 100 g of the element by 10oC? (b) If the same amount of heat needed to raise the temperature of 1 g of aluminum by 25oC were applied to 1 g of mercury, by how many degrees would its temperature be raised? (c) If a certain amount of heat is used to raise the temperature of 1.6 g of iron by 10oC, the temperature of 1 g of which element would also be raised by 10oC, using the same amount of heat?arrow_forwardA rebreathing gas mask contains potassium superoxide, KO2, which reacts with moisture in the breath to give oxygen. 4KO2(s)+2H2O(l)4KOH(s)+3O2(g) Estimate the grams of potassium superoxide required to supply a persons oxygen needs for one hour. Assume a person requires 1.00 102 kcal of energy for this time period. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 1.00 102 kcal of heat, calculate the amount of oxygen consumed and hence the amount of KO2 required. The ff0 for glucose(s) is 1273 kJ/mol.arrow_forwardDuring a recent winter month in Sheboygan, Wisconsin, it was necessary to obtain 3500 kWh of heat provided by a natural gas furnace with 89% efficiency to keep a small house warm (the efficiency of a gas furnace is the percent of the heat produced by combustion that is transferred into the house). (a) Assume that natural gas is pure methane and determine the volume of natural gas in cubic feet that was required to heat the house. The average temperature of the natural gas was 56 F; at this temperature and a pressure of 1 atm, natural gas has a density of 0.68 1 g/L. (b) How many gallons of LPG (liquefied petroleum gas) would be required to replace the natural gas used? Assume the LPG is liquid propane [ C3H8 : density, 0.5318 g/mL; enthalpy of combustion, 2219 Id/mo for the formation of CO2(g) and H2O(l) ] and the furnace used to burn the LPG has the same efficiency as the gas furnace. (c) What mass of carbon dioxide is produced by combustion of the methane used to heat the house? (d) What mass of water is produced by combustion of the methane used to heat the house? (e) What volume of air is required to provide the oxygen for the combustion of the methane used to heat the house? Air contains 23% oxygen by mass. The average density of air during the month was 1.22 g/L. (f) How many kilowatt—hours ( 1kWh=3.6106 J) of electricity would be required to provide the heat necessary to heat the house? Note electricity is 100% efficient in producing heat inside a house. (g) Although electricity is 100% efficient in producing heat inside a house, production and distribution of electricity is not 100% efficient. The efficiency of production and distribution of electricity produced in a coal-fired power plant is about 40%. A certain type of coal provides 2.26 kWh per pound upon combustion. What mass of this coal in kilograms will be required to produce the electrical energy necessary to heat the house if the efficiency of generation and distribution is 40%?arrow_forward
- What is the main difference between electrostatic forces and gravitational forces? Which is more similar to the magnetic force? Can two or all three of these forces be exerted between two objects at the same time?arrow_forwardExplain the economic importance of conversions between different forms of energy and the inevitability of losses in this process.arrow_forwardAs a child plays on a swing, at what point in her movement is her kinetic energy the greatest? At what point is potential energy at its maximum?arrow_forward
- A piece of iron was heated to 95.4C and dropped into a constant-pressure calorimeter containing 284 g of water at 32.2C. The final temperature of the water and iron was 51.9C. Assuming that the calorimeter itself absorbs a negligible amount of heat, what was the mass (in grams) of the piece of iron? The specific heat of iron is 0.449 J/(gC), and the specific heat of water is 4.18 J/(gC).arrow_forwardA geochemist measures the concentration of salt dissolved in Lake Parsons and finds a concentration of 69.32 g.L The geochemist also measures the concentration of salt in several nearby non-isolated lakes, and finds an average concentration of 5.02 g⋅L¯¹. Assuming the salt concentration in Lake Parsons before it became isolated was equal to the average salt concentration in nearby non-isolated lakes, calculate the percentage of Lake Parsons which has evaporated since it became isolated. Be sure your answer has the correct number of significant digits.arrow_forwardAfter sitting on a shelf for a while, a can of soda at a room temperature (69°F) is placed inside a refrigerator and slowly cools. The temperature of the refrigerator is 37°F. Newton's Law of Cooling explains that the temperature of the can of soda will decrease proportionally to the difference between the temperature of the can of soda and the temperature of the refrigerator, as given by the formula below: T = Ta + (To – Ta)e¬kt the temperature surrounding the object To = the initial temperature of the object t = the time in minutes the temperature of the object after t minutes k = decay constant T The can of soda reaches the temperature of 54°F after 40 minutes. Using this information, find the value of k, to the nearest thousandth. Use the resulting equation to determine the Fahrenheit temperature of the can of soda, to the nearest degree, after 95 minutes. Enter only the final temperature into the input box.arrow_forward
- A subcompact car with a mass of 1.60×103 kg and a loaded dump truck with a mass of 1.60×104 kg are traveling at the same speed. How many times more kinetic energy does the dump truck have than the car?arrow_forwardIn a calorimetry experiment in a Chemistry for Engineers Laboratory class, a 12.9 - g sample of aluminum is heated in a water bath until its temperature is 93 degrees Celsius. It is quickly transferred to a coffee - cup calorimeter containing 50 mL water whose temperature is 27.7 degrees Celsius. The calorimeter was covered and the final temperature of both aluminum and water was read. What is the final temperature, in Celsius, of the two substances rounded off to the second decimal place? The specific heat of aluminum and water are 0.88 J/g °C and 4.184 J/g °C, respectively.arrow_forwardHeat capacity is the number of joules (J) per Kelvin (K). The heat capacity was 15.080 J/K. What is this in MJ/kK?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Measurement and Significant Figures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Gn97hpEkTiM;License: Standard YouTube License, CC-BY
Trigonometry: Radians & Degrees (Section 3.2); Author: Math TV with Professor V;https://www.youtube.com/watch?v=U5a9e1J_V1Y;License: Standard YouTube License, CC-BY