Air pollution is a serious problem in many places. One form of air pollution that is suspected to cause respiratory illness is particulate matter (PM), which consists of tiny particles in the air. Particulate matter can come from many sources, most commonly ash from burning, but also from other sources such as tiny particles of rubber that wear off of automobile and truck tires.
The town of Libby. Montana, was recently the focus of a study on the effect of PM on the respiratory health of children. Many houses in Libby are heated by wood stoves, which produce a lot of particulate pollution. The level of PM is greatest in the winter when more stoves are being used, and declines as the weather becomes warmer. The study attempted to determine whether higher levels of PM affect the respiratory health of children. In one part of the study, schoolchildren were given a questionnaire to bring home to their parents. Among other things, the questionnaire asked whether the child had experienced symptoms of wheezing during the past 60 days. Most parents returned the questionnaire within a couple of weeks. Parents who did not respond promptly were sent another copy of the questionnaire through the mail. Many of these parents responded to this mailed version.
Table 1.2 presents, for each day, the number of questionnaires that were returned by parents of children who wheezed, the number returned by those who did not wheeze, the average concentration of particulate matter in the atmosphere during the past 60 days (in units of micrograms per cubic meter), and whether the questionnaires were delivered in school or through the mail.
We will consider a PM level of 17 or more to be high exposure, and a PM level of less than 17 to be low exposure.
What percentage of the high-exposure people had wheeze symptoms?
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Elementary Statistics (Text Only)
- The specification calls for the dimension of a certain mechanical part to be 0.55 inches. A random sample of 35 parts taken from a large batch showed a mean 0.54 in. with a deviation of 0.05 in. Can it be concluded, at 1% significance, that the batch of parts meets the required specification?arrow_forwardA manufacturer produces a wire rope of a certain type, which has a breaking strength of not more than 300 kg. A new and cheaper process is discovered which is desired to be employed, provided that the wire rope thus produced has an average breaking strength greater than 300 kg. If a random sample of 26 wires produced with the new process has given a mean of 304.5 kg and a standard deviation of 15 kg, should the manufacturer adopt the new process?arrow_forwardWe are interested in whether the proportions of female suicide victims for ages 15 to 24 are the same between the white and the black races in the United States. We randomly pick one year to compare the races. The number of suicides estimated in the United States in that year for white females is 4,930. Five hundred eighty-three were aged 15 to 24. The estimate for black females is 330. Forty-one were aged 15 to 24. We will let female suicide victims be our population. (Use α = 0.05.) NOTE: If you are using a Student's t-distribution for the problem, including for paired data, you may assume that the underlying population is normally distributed. (In general, you must first prove that assumption, though.) Part (a) State the null hypothesis. ○ Ho: PW> PB O Ho: PW + PB Ho: Pw≤ PB Ho: PW-PB ○ Ho: Pw PB Part (c) In words, state what your random variable P'w-P'B represents. P'w-P'B represents the average difference of white and black female suicide victims, aged 15 to 24. ○ P'w-P'B…arrow_forward
- please solve this problem step by step and make it quick pleasearrow_forwardplease solve this problem step by step and make it quick pleasearrow_forward8.67 Free recall memory strategy. Psychologists who study ①memory often use a measure of "free recall" (e.g., the RECALL number of correctly recalled items in a list of to-be- remembered items). The strategy used to memorize the list-for example, category clustering-is often just as important. Researchers at Central Michigan University developed an algorithm for computing measures of cat- egory clustering in Advances in Cognitive Psychology (Oct. 2012). One measure, called ratio of repetition, was recorded for a sample of 8 participants in a memory study. These ratios are listed in the table. Test the theory that the average ratio of repetition for all participants in a similar memory study differs from .5. Select an appropriate Type I error rate for your test. .25 .43 .57 .38 .38 .60 .47 .30 Source: Senkova, O., & Otani, H. "Category clustering calculator for free recall." Advances in Cognitive Psychology, Vol. 8, No. 4, Oct. 2012 (Table 3).arrow_forward
- 8.64 Radon exposure in Egyptian tombs. Refer to the D Radiation Protection Dosimetry (Dec. 2010) study TOMBS of radon exposure in Egyptian tombs, Exercise 7.39 (p. 334). The radon levels-measured in becquerels per cubic meter (Bq/m³)-in the inner chambers of a sam- ple of 12 tombs are listed in the table. For the safety of the guards and visitors, the Egypt Tourism Authority (ETA) will temporarily close the tombs if the true mean level of radon exposure in the tombs rises to 6,000 Bq/m³. Consequently, the ETA wants to conduct a test to deter- mine if the true mean level of radon exposure in the tombs is less than 6,000 Bq/m³, using a Type I error probabil- ity of .10. A SAS analysis of the data is shown on p. 399. Specify all the elements of the test: Ho, Ha, test statistic, p-value, a, and your conclusion. 50 390 910 12100 180 580 7800 4000 3400 1300 11900 1100 N Mean Std Dev Std Err Minimum Maximum 12 3642.5 4486.9 1295.3 50.0000 12100.0arrow_forwardHow does probability help businesses make informed decisions under uncertainty? Provide an example of how businesses use probability in marketing to predict customer behavior. Why is probability considered essential in financial decision-making, particularly in portfolio management? Discuss how the use of probability in inventory management can improve customer satisfaction. Compare the role of probability in marketing and financial decision-making. How do the applications differ in their objectives?arrow_forward55 5.5 A glass bottle manufacturing company has recorded data on the average number of defects per 10,000 bottles due to stones (small pieces of rock embedded in the bottle wall) and the number of weeks since the last furnace overhaul. The data are shown below. Defects per 10,000 Weeks 13.0 4 16.1 5 14.5 6 17.8 7 22.0 8 27.4 9 16.8 10 65.6 ☐☐ Defects per 10,000 Weeks 34.2 11 12 49.2 13 66.2 81.2 87.4 14 15 16 114.5 17 a. Fit a straight-line regression model to the data and perform the standard tests for model adequacy. b. Suggest an appropriate transformation to eliminate the problems encoun- tered in part a. Fit the transformed model and check for adequacy.arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill