![University Physics Volume 1](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_largeCoverImage.gif)
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 37P
Mount Everest, at
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A cylinder with a piston contains 0.153 mol of
nitrogen at a pressure of 1.83×105 Pa and a
temperature of 290 K. The nitrogen may be
treated as an ideal gas. The gas is first compressed
isobarically to half its original volume. It then
expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
Part A
Compute the temperature at the beginning of the adiabatic expansion.
Express your answer in kelvins.
ΕΠΙ ΑΣΦ
T₁ =
?
K
Submit
Request Answer
Part B
Compute the temperature at the end of the adiabatic expansion.
Express your answer in kelvins.
Π ΑΣΦ
T₂ =
Submit
Request Answer
Part C
Compute the minimum pressure.
Express your answer in pascals.
ΕΠΙ ΑΣΦ
P =
Submit
Request Answer
?
?
K
Pa
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
Τ
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Chapter 1 Solutions
University Physics Volume 1
Ch. 1 - Check Your Understanding Restate 4.79105kg using a...Ch. 1 - Check Your Understanding Light navels about 9 Pm...Ch. 1 - Check Your Understanding We know horn Figure 1.4...Ch. 1 - Check Your Understanding Given that 1 lb (pound)...Ch. 1 - Check Your Understanding Suppose we want the...Ch. 1 - Check Your Understanding Is the equation...Ch. 1 - Check Your Understanding Figure 1.4 says the mass...Ch. 1 - Check Your Understanding A high school track coach...Ch. 1 - The Scope and Scale of Physics What is physics?Ch. 1 - The Scope and Scale of Physics Some have described...
Ch. 1 - The Scope and Scale of Physics If two different...Ch. 1 - The Scope and Scale of Physics What determines the...Ch. 1 - The Scope and Scale of Physics Certain criteria...Ch. 1 - The Scope and Scale of Physics Can the validity of...Ch. 1 - Units and Standards Identify some advantages of...Ch. 1 - Units and Standards What are the SI base units of...Ch. 1 - Units and Standards What is the difference between...Ch. 1 - For each of the following scenarios, refer to...Ch. 1 - Significant Figures (a) What is the relationship...Ch. 1 - Solving Problems in Physics What information do...Ch. 1 - Solving Problems in Physics What should you do...Ch. 1 - The Scope and Scale of Physics Find the order of...Ch. 1 - Use the orders of magnitude you found in the...Ch. 1 - Roughly how many heartbeats are there in a...Ch. 1 - A generation is about one-third of a lifetime....Ch. 1 - Roughly how many times longer than the mean life...Ch. 1 - Calculate the approximate number of atoms in a...Ch. 1 - (a) Calculate the number of cells in a hummingbird...Ch. 1 - Assuming one nerve impulse must end before another...Ch. 1 - About how many floating-point operations can a...Ch. 1 - Roughly how many floating-point operations can a...Ch. 1 - The following times are given using metric...Ch. 1 - The following times are given in seconds. Use...Ch. 1 - The following lengths are given using metric...Ch. 1 - The following lengths are given in meters. Use...Ch. 1 - The following masses are written using metric...Ch. 1 - The following masses are given in kilograms. Use...Ch. 1 - The volume of Earth is on the order of 1021m3 ....Ch. 1 - The speed limit on some interstate highways is...Ch. 1 - A car is traveling at a speed of 33 m/s. (a) What...Ch. 1 - In SI units, speeds are measured in meters per...Ch. 1 - American football is played on a 100-yd-long...Ch. 1 - Soccer fields vary in size. A large soccer field...Ch. 1 - What is the height in meters of a person who is...Ch. 1 - Mount Everest, at 29,028ft , is the tallest...Ch. 1 - The speed of sound is measured to be 342 m/s on a...Ch. 1 - Tectonic plates are large segments of Earth’s mist...Ch. 1 - The average distance between Earth and the Sun is...Ch. 1 - The density of nuclear matter is about 1018kg/m3 ....Ch. 1 - The density of aluminum Is 2.7g/cm3 . What is the...Ch. 1 - A commonly used turn of mass in the English system...Ch. 1 - A furlong is 220 yd. A fortnight is 2 weeks....Ch. 1 - It takes 2 radians (rad) to get around a circle,...Ch. 1 - Light travels a distance of about 3108m/s . A...Ch. 1 - A light-nanosecond is the distance light travels...Ch. 1 - An electron has a mass of 9.1110-31kg . A proton...Ch. 1 - A fluid ounce is about 30mL. What is the voIume of...Ch. 1 - A student is trying to remember some formulas from...Ch. 1 - Consider the physical quantities s,v,a, and t with...Ch. 1 - Consider the physical quantities m,s,v,a, and t...Ch. 1 - Suppose quantity s is a length and quantity t is a...Ch. 1 - Suppose [V]=L3,[]=ML3, and [t]=T . (a) What is the...Ch. 1 - The arc length formula says the length sof arc...Ch. 1 - Estimates and Fermi Calculations Assuming the...Ch. 1 - Assuming the human body is primarily made of...Ch. 1 - Estimate the mass of air in a classroom.Ch. 1 - Estimate the number of molecules that make up...Ch. 1 - Estimate the surface area of a person.Ch. 1 - Roughly how many solar systems would it take to...Ch. 1 - (a) Estimate the density of the Moon. (b) Estimate...Ch. 1 - The average density of the Sun is on the order...Ch. 1 - Estimate the mass of a virus.Ch. 1 - A floating-point operation is a single arithmetic...Ch. 1 - Consider the equation 4000/400=10.0 . Assuming the...Ch. 1 - Suppose your bathroom scale reads your mass as 65...Ch. 1 - A good-quality measuring tape can be off by 0.50cm...Ch. 1 - An infant’s pulse rate is measured to be 1305...Ch. 1 - (a) Suppose that a person has an average heart...Ch. 1 - A can contains 375 mL of soda. How much is left...Ch. 1 - State how many significant figures are proper In...Ch. 1 - (a) How many significant figures are in the...Ch. 1 - (a) If your speedometer has an uncertainty of 2.0...Ch. 1 - (a) A person’s blood pressure is measured to be...Ch. 1 - A person measures his or her heart rate by...Ch. 1 - What is the area of a circle 3.102 cm in diameter?Ch. 1 - Determine the number of significant figures in the...Ch. 1 - Perform the following calculations and express...Ch. 1 - Consider the equation y=mt+b, where the dimension...Ch. 1 - Consider the equation...Ch. 1 - (a) A car speedometer has a 5% uncertainty. What...Ch. 1 - A marathon runner completes a 42.188-km course in...Ch. 1 - The sides of a small rectangular box are measured...Ch. 1 - When nonmetric units we used in the United...Ch. 1 - The length and width of a rectangular room are...Ch. 1 - A car engine moves a piston with a circular...Ch. 1 - The first atomic bomb was detonated on July 16,...Ch. 1 - The purpose of this problem is to show the entire...
Additional Science Textbook Solutions
Find more solutions based on key concepts
71. MCAT-Style Passage Problems
Lightbulb Failure
You’ve probably observed that the most common time for an inc...
College Physics: A Strategic Approach (3rd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Draw the structure of the monomer or monomers used to synthesize the following polymers, and indicate whether e...
Organic Chemistry (8th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Starting with 10 bacterial cells per milliliter in a sufficient amount of complete culture medium with a 1-hour...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
- A-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardYour answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward
- 4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Components of a Vector (Part 1) | Unit Vectors | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=fwMUELxZ0Pw;License: Standard YouTube License, CC-BY
02 - Learn Unit Conversions, Metric System & Scientific Notation in Chemistry & Physics; Author: Math and Science;https://www.youtube.com/watch?v=W_SMypXo7tc;License: Standard Youtube License