In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably mole comfortable of thinking of speeds in terms of either kilometers per hour (km/h) or miles per hour (mi/h). In this problem, you will see that 1 m/s is roughly 4 km/h or 2 mi/h, which is handy to use when developing your physical Intuition. More precisely, show that (a) 1 .0 m/s = 3 .6 km/h and 1 .0 m/s = 2 .2 mi/h .
In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably mole comfortable of thinking of speeds in terms of either kilometers per hour (km/h) or miles per hour (mi/h). In this problem, you will see that 1 m/s is roughly 4 km/h or 2 mi/h, which is handy to use when developing your physical Intuition. More precisely, show that (a) 1 .0 m/s = 3 .6 km/h and 1 .0 m/s = 2 .2 mi/h .
In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably mole comfortable of thinking of speeds in terms of either kilometers per hour (km/h) or miles per hour (mi/h). In this problem, you will see that 1 m/s is roughly 4 km/h or 2 mi/h, which is handy to use when developing your physical Intuition. More precisely, show that (a)
1
.0 m/s = 3
.6 km/h
and
1
.0 m/s = 2
.2 mi/h
.
Figure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.
2. A projectile is shot from a launcher at an angle 0,, with an initial velocity
magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a
child's noggin (see Figure 1). The apple is a height y above the tabletop, and a
horizontal distance x from the launcher. Set this up as a formal problem, and solve
for x. That is, determine an expression for x in terms of only v₁, 0, y and g.
Actually, this is quite a long expression. So, if you want, you can determine an
expression for x in terms of v., 0., and time t, and determine another expression for
timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of
t into the expression for x. Your final equation(s) will be called Equation 3 (and
Equation 4).
Draw a phase portrait for an oscillating, damped spring.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.