The mass flow rate in a water flow system determined by collecting the discharge over a timed interval is 0.2 kg/s. The scales used can be read to the nearest 0.05 kg and the stopwatch is accurate to 0.2 s. Estimate the precision with which the flow rate can be calculated for time intervals of (a) 10 s and (b) 1 min.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Additional Engineering Textbook Solutions
Starting Out with C++: Early Objects (9th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Starting Out with C++ from Control Structures to Objects (9th Edition)
Starting Out With Visual Basic (8th Edition)
- 1| 2 | 3 | 4| 5 | 6 7 8 9 10 Measurement Flow Rate (liters/hr)| 1066 1022 | 1143 995 1004| 927 | 1024 | 945 979 | 1059 1. The table above contains 10 measurements taken of the volume flow rate through a pump running at a fixed operating conditions. Find the following statistical quantitie for this data set: a. The average flow rate: Vave liters/hr. b. The median flow rate: Vmedian liters/hr. c. The sample standard deviation: 0, liters/hr.arrow_forwardPlease solve thisarrow_forward(b) A pitot-static probe is use to determine the flow velocity by measuring the differential pressure. The pitot formula to obtain the flow velocity is, 2(P- P,) V = where, V is the velocity, P is pressure and pis fluid density. i) The pressure difference sensor use in the system is electronic types and the output of the device is measured in voltage. The output of the pressure device is 3.5 V and the linear relationship between the device and the pressure difference is 10 kPa/V. If the measured fluid is water at 20°C, determine the pressure difference inside the system the water velocity. ii) The Pitot-static tube is also commonly use in aircraft. An aircraft flying at 3000 m above sea level when the differential pressure reading clocked 3 kPa. Determine the speed of the aircraft.arrow_forward
- The transducer specified in Table 1.1 is chosen to measurea nominal pressure of 500 cm H2O. The ambient temperature is expected to vary between 18 ∘C and 25 ∘C duringtests. Estimate the possible range (magnitude) of each listedelemental error affecting the measured pressure refering to the solution provided online, Sensitivity error(eK) = (±0.0025)(500 cm H2O)= ± 0.75 cm H2O = ± 0.00375 V how do you get 0.75?? shoud it not be 1.25? according the answer, for sensitivityarrow_forwardHANDWRITTEN AND FINAL ANSWER MUST BE IN ENGLISH UNITS. Show solution. An experimental gas turbine engine is under development to increase its mechanical efficiency. It has a turbine efficiency of 95% and compressor efficiency of 85%. The following parameters are provided: P1 = 550 kPa, T1 = 25 deg C, rp = 5.5, T3 = 1450 deg C, Wnet = 5500 kW. Compute for the (a) flow rate and (b) mean effective pressure. Consider Ethane as your working fluid.arrow_forward1. Start from the following equations from class notes (treat as given): The shear stress in pipe flow T = -μ- dr du 16 [1-(-)²), AP D² 16μL The fluid velocity in the pipe u = Derive clearly the following results: (a) The shear stress on the wall of the pipe, Tw. (b) The average velocity in the pipe flow, ū. (c) The Darcy friction factor, defined by f where L is the length of the pipe. 8 tw pū² (d) Express the result of (c) in terms of the Reynolds number, Re. (e) Find an expression for the head loss due to shear stress at the wall, AH₁, in terms of f,u, D and L. (f) What are the main assumptions in the fluid flow, in order to analyse the flow in this way?arrow_forward
- 4. Consider the branched pipe flow shown below used to transport water. Locations 1, 2, and 3 are equipped with pressure gauges that measure interior pressures. Inlet P1 Outlet P2 P3 Telepon sa Outlet Total volumetric flow rate at the inlet (1) is 0.27 m³/s. The diameter at location 1, 2, and 3 are 12.5 cm, 10 cm, and 7.5 cm, respectively. Pressure gauges 1 and 3 read 1.7 atm and 1.36 atm, respectively. Estimate the pressure pz. All three branches are in a horizontal plane. Neglect friction losses.arrow_forwardA water truck drives slowly around a construction site, spraying water to keep dust down. A pump maintains a constant pressure of 100 kPa, gage, and the water is dispersed through 20 spray nozzles, each of diameter 1 cm. If the truck is initially filled with 4000 L of water, and the flow rate is constant, determine how long the truck can drive before a refill is needed. [57.0 s]arrow_forwardThe friction in flows through the pipe is defined by a dimensionless number called the fanning friction factor (f). The Fanning friction factor is represented by another dimensionless number, the Reynolds number (Re).It depends on the diameter of the pipe and some parameters related to the fluid. An equation that can predict f given the Reynolds number is given as follows. If Re =4000, e/D=0.01 in this equation, find the value of f using the Simple Iteration method by taking f0=0.1 as the initial value for the solution (ԑ=0.0001)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY