Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 31Q
To determine
The distance of Voyager spacecraft from earth, when it sent the picture of Neptune.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…
The Mars Robotic Lander for which we are making these calculations is designed to return samples of rock from Mars after a long time of collecting samples, exploring the area around the landing site, and making chemical analyses of rocks and dust in the landing area. One synodic period is required for Earth to be in the same place relative to mars as when it landed.
Calculate the synodic period (in years) using the following formula:
1/Psyn = (1/PEarth) - (1/PMars)
where PEarth is the sidereal period of the Earth (1 year) and PMars is the sidereal period of Mars.
If 3/4 of a Martian year was spent collecting samples and exploring the terrain around the landing site, calculate how long the Mars Robotic Lander expedition took!
The chart shows the length of time for each planet, in Earth days, to make one complete
revolution around the Sun.
Orbital Period of Planets iY
the Solar System
Orbital Period
(Earth days)
88
225
365
687
4333
10 759
30 685
60 189
Planet
Mercury
Venus
Earth
Mars
Jupiter
Satum
Uranus
Neptune
Source: NASA
Use the data table above to compare the length of a year on Mars and Neptune. (HS-ESS1-4)
a. One year on Neptune is almost 100 times longer than a year on Mars.
b. One year on these two planets is nearly equal.
c. One year on Mars is almost 100 times longer than a year on Neptune.
d. One year these two planets is roughly equal to a year on Earth.
Use the data table above to determine which of the following statements is TRUE. (HS-ESS1-4)
a. There is no relationship between a planet's distance from the Sun and its length of
year.
b. The closer a planet is to the Sun, the longer the planet's year.
c. One year on all planets is about 365 days long.
d. The farther away a planet is from the…
Chapter 1 Solutions
Universe: Stars And Galaxies
Ch. 1 - Prob. 1QCh. 1 - Prob. 2QCh. 1 - Prob. 3QCh. 1 - Prob. 4QCh. 1 - Prob. 5QCh. 1 - Prob. 6QCh. 1 - Prob. 7QCh. 1 - Prob. 8QCh. 1 - Prob. 9QCh. 1 - Prob. 10Q
Ch. 1 - Prob. 11QCh. 1 - Prob. 12QCh. 1 - Prob. 13QCh. 1 - Prob. 14QCh. 1 - Prob. 15QCh. 1 - Prob. 16QCh. 1 - Prob. 17QCh. 1 - Prob. 18QCh. 1 - Prob. 19QCh. 1 - Prob. 20QCh. 1 - Prob. 21QCh. 1 - Prob. 22QCh. 1 - Prob. 23QCh. 1 - Prob. 24QCh. 1 - Prob. 25QCh. 1 - Prob. 26QCh. 1 - Prob. 27QCh. 1 - Prob. 28QCh. 1 - Prob. 29QCh. 1 - Prob. 30QCh. 1 - Prob. 31QCh. 1 - Prob. 32QCh. 1 - Prob. 33QCh. 1 - Prob. 34QCh. 1 - Prob. 35QCh. 1 - Prob. 36QCh. 1 - Prob. 37QCh. 1 - Prob. 38QCh. 1 - Prob. 39QCh. 1 - Prob. 40QCh. 1 - Prob. 41QCh. 1 - Prob. 42Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate how long radio communications from the spacecraft will take when it encounters Mars. The furthest distance from Earth to Mars is 2.66 AU. Remember that 1 AU = 1.5 x 1011 m and that light travels at 3 x 108 m/s. So how long will the radio messages take to travel this greatest distance of 2.66 AU? If two way communication between the Earth and the spacecraft involve a 1 s time lapse before an acknowledging signal is sent by the spacecraft, how long a time is there between sending a command to the spacecraft and receiving a reply?arrow_forwardYou are making a scale model to visualize the relative sizes of the planets in our solar system. The scale of the model is: 1 cm = 2000 km. The radius of Saturn is 60,000 km. At what radius will Saturn appear on your scale model?arrow_forwardThe closest approach distance between Mars and Earth is 56 million km. Assume you can travel in a spaceship at 58,000 km/h (which is the speed achieved by the New Horizons space probe that went to Pluto and is the fastest speed so far of any space vehicle launched from Earth). How long would it take you in hours to get to Mars at the time of closest approach?arrow_forward
- The value we have just calculated is the combined masses of Jupiter and Callisto! Their mass is in units of the Sun's Mass (MS) - we can convert this to units which are more familiar to us like kilograms by multiplying this answer by the scale factor (1.99x1030 kg/1 MS): (MJupiter + MCallisto) = ( MS) (1.99x1030 kg/1 Solar Mass) = _______x_10___ kg (I have already written the x 10 so you are reminded to write the exponenet of 10 in the scientific notation expression of your answer). Since you know from looking at pictures of Jupiter with its Galilean Satellites (look in your book at a picture if you have not already), that Callisto is much smaller than Jupiter - in fact it is less than 0.001 of Jupiter's size or mass, so the number we have just calculated for (MJupiter + MCallisto) is almost the same as MJupiter . How much more massive is Jupiter than the Earth? (The mass of Earth is about 5.98 x 1024 kg)arrow_forwardEarlier in this chapter, we modeled the solar system with Earth at a distance of about one city block from the Sun. If you were to make a model of the distances in the solar system to match your height, with the Sun at the top of your head and Pluto at your feet, which planet would be near your waist? How far down would the zone of the terrestrial planets reach?arrow_forwardWhy do we say that Neptune was the first planet to be discovered through the use of mathematics?arrow_forward
- The figure on the right shows a portion of the ring and moon system of Saturn. The inner edge of the Cassini division is defined by a 2:1 resonance with Mimas; that is, a particle at that distance orbits twice for every one orbit made by Mimas, and as a result, it feels an unbalanced gravitational tug outward. If Mimas has an orbital semimajor axis of 185,539 km, what is the semimajor axis of the inner edge of the Cassini division in km?arrow_forwardThis is a preliminary version of the Mars Project - to think about the time it takes to complete a Mars mission. Consider the following simplified Earth to Mars transfer: • Departs Earth • Enter Mars orbit • Orbit Mars orbit for some time • Exit Mars orbit to return • Enter Earth orbit a. What is the flight time, in days, from Earth to Mars? What is the return flight time? [Answer: 258.83 days] b. Where does Mars need to be (outbound) to reach it at the end of the Hohmann transfer (tip: 180° "later"). [Answer: 44.329°] c. To return to Earth with a Hohmann transfer, the opposite will need to be true: Earth must be at a specific angle at the time of departure from Mars for the spacecraft to reach Earth's orbit when Earth is there. What is that angle? [Answer: -75.097°] d. When is the first opportunity to return to Earth for that optimal Hohmann transfer? [Answer: 454.70 days] e. What is the total round trip time to Mars for this ideal Hohmann transfer?arrow_forwardYou are elected as the chief engineer of a project to explore the whole Solar System. Your aim is to design, manufacture and run a satellite -or- a device -or- a spaceship -or- "something" that will travel to each planet in the solar system, explore it and then send the data gained back to Earth. What points you consider as important stages of the project? What kind of travel method(s) you would use to cover whole solar system? How are you going to send back the data you gathered during the exploration?arrow_forward
- The gravity on Mars is about 38% that of Earth's gravity. Let's say some cargo has a mass of 15 kg here on Earth. First, what would be the weight of that cargo in kilograms on Mars? Explain your answer. Second, what would be the mass of that cargo in kilograms on Mars? Explain your answer.arrow_forwardImagine you grew up on Mars, whose semi-major axis is 1.5 AU. In observing the planets over your lifetime from the Martian surface, what is the largest angular separation you would see between the Earth and the Sun? Take the orbits of the Earth and Mars to be circular.arrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY