Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 18Q
To determine
The diameter of the moon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Dione, a moon of Saturn, has an orbital radius of 377,400 km, and an
orbital period of about 2.737 Earth days. Find the orbital period of Rhea,
another moon of Saturn, which has an orbital radius of 527,040 km.
Find the period in Earth days. Round to the nearest hundredth. Don't
worry about putting the unit, just put the answer.
Neptune is an average distance of 4.5×10^9 km from the Sun.
- How many astronomical units (AU) is Neptune from the Sun? One AU is 1.50×10^8 km.
- Estimate the length of the Neptunian year using your answer from part (a).
Suppose you were given a 3 in diameter ball to represent the Earth and a 1 in diameter ball to represent the Moon. (The actual ratio of Earth diameter to Moon diameter is 3.7 to 1.)
The actual average Earth–Moon distance is about 384,000 kilometers, and Earth’s diameter is about 12,800 kilometers. How many “Earth diameters” is the distance from Earth to the Moon?
Based on your answer to Question 2, what is the correct scaled distance of the Moon, using the 3-inch ball as Earth?
The Sun’s actual diameter is about 1,400,000 kilometers. How many “Earth diameters” is this? Given your 3-inch Earth, how large (i.e what diameter) of a ball would you need to represent the Sun? Give your answer in feet.
The average Earth–Sun distance is about 149,600,000 km. To represent this distance to scale, how far away would you have to place your 3-inch Earth from your Sun? Give your answer in feet.
Could we use this scale to visualize the solar system instead of just the Earth and Moon? Why or Why…
Chapter 1 Solutions
Universe: Stars And Galaxies
Ch. 1 - Prob. 1QCh. 1 - Prob. 2QCh. 1 - Prob. 3QCh. 1 - Prob. 4QCh. 1 - Prob. 5QCh. 1 - Prob. 6QCh. 1 - Prob. 7QCh. 1 - Prob. 8QCh. 1 - Prob. 9QCh. 1 - Prob. 10Q
Ch. 1 - Prob. 11QCh. 1 - Prob. 12QCh. 1 - Prob. 13QCh. 1 - Prob. 14QCh. 1 - Prob. 15QCh. 1 - Prob. 16QCh. 1 - Prob. 17QCh. 1 - Prob. 18QCh. 1 - Prob. 19QCh. 1 - Prob. 20QCh. 1 - Prob. 21QCh. 1 - Prob. 22QCh. 1 - Prob. 23QCh. 1 - Prob. 24QCh. 1 - Prob. 25QCh. 1 - Prob. 26QCh. 1 - Prob. 27QCh. 1 - Prob. 28QCh. 1 - Prob. 29QCh. 1 - Prob. 30QCh. 1 - Prob. 31QCh. 1 - Prob. 32QCh. 1 - Prob. 33QCh. 1 - Prob. 34QCh. 1 - Prob. 35QCh. 1 - Prob. 36QCh. 1 - Prob. 37QCh. 1 - Prob. 38QCh. 1 - Prob. 39QCh. 1 - Prob. 40QCh. 1 - Prob. 41QCh. 1 - Prob. 42Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Look at Figure 1-6. How can you tell that Mercury does not follow a circular orbit?arrow_forwardThinking about the Scale of the Solar System As we discussed, the radius of the Earth is approximately 6370 km. The Sun, on the other hand, is approximately 700,000 km in radius and located, on average, one astronomical unit (1 au=1.5x108 km) from the Earth. Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis. You hold a standard desk globe, which has a diameter of 12 inches, and you want to build a model of the Sun, Earth, and their separation that keeps all sizes and lengths in proportion to one another. a) How big would the Sun be in this scale model? Give your answer in feet and meters. b) The nearest star to the Solar System outside of the Sun is Proxima Centauri, which is approximately 4.2 light years away (a light year is the distance light travels in one year, or approximately 9.5x1012 km). Given the scale model outlined above, how far would a model Proxima Centauri be placed from you? Give your answer in miles and km.arrow_forwardThe average distance from Earth to the sun is defined as one astronomical unit (AU). If an asteroid orbits the Sun in 1/3 of a year in a circular orbit, what is the asteroid's distance from the Sun in AU? Round your answer to 2 significant figures.arrow_forward
- On August 27, 2003, the planet Mars was at a distance of 0.373 AU from Earth. The diameter of Mars is 6788 km. Calculate the angular diameter of Mars, as seen from Earth on August 27, 2003. Give your answer in arcminutes.arrow_forwardWhat is the angular diameter of Saturn (in arc seconds) as seen from Earth when the two planets are farthest apart?arrow_forwardThe table below presents the semi-major axis (a) and Actual orbital period for all of the major planets in the solar system. Cube for each planet the semi-major axis in Astronomical Units. Then take the square root of this number to get the Calculated orbital period of each planet. Fill in the final row of data for each planet. Table of Data for Kepler’s Third Law: Table of Data for Kepler’s Third Law: Planet aau = Semi-Major Axis (AU) Actual Planet Calculated Planet Period (Yr) Period (Yr) __________ ______________________ ___________ ________________ Mercury 0.39 0.24 Venus 0.72 0.62 Earth 1.00 1.00 Mars 1.52 1.88 Jupiter…arrow_forward
- The mean radius of earth is 6,371.0 kilometers and the mean radius of earths moon is 1,737.5 kilometers. What is the approximate difference in the mean conferences, in kilometers, of earth and earths moon? Round your answer to the nearest tenth of a kilometer.arrow_forwardFrom Earth, the angular size of the Moon is 0.5 degree. The distance between the Earth and the Moon is 384,400 km. Use the small-angle formula to find the size of the Moon. Compare the number to the distance of the Moon given previously. It is consistent?arrow_forwardThe angle on the sky between Venus and the Sun is measured to be 46.3° when Venus is at greatest eastern elongation. What is the distance of Venus from the Sun, measured in AU? Choose the answer below that most closely matches your answer. Select one: а. 1.763 AU O b. 0.587 AU Ос. 0.652 AU O d. 0.846 AU Ое. 0.723 AUarrow_forward
- Use the small-angle formula to calculate the angular diameter (in arc minutes) of Mars (d = 6.79 ✕ 103 km) as seen from Earth if Mars were at the location of the Sun (D = 1.5 ✕ 108 km).arrow_forwardCharles is exploring the Stellarium app and found the moon 30 units North of Vega while Venus is 70 units East of the moon. How far is Vega from Venus. Indicate both the magnitude and the directionarrow_forwardThe Mars Robotic Lander for which we are making these calculations is designed to return samples of rock from Mars after a long time of collecting samples, exploring the area around the landing site, and making chemical analyses of rocks and dust in the landing area. One synodic period is required for Earth to be in the same place relative to mars as when it landed. Calculate the synodic period (in years) using the following formula: 1/Psyn = (1/PEarth) - (1/PMars) where PEarth is the sidereal period of the Earth (1 year) and PMars is the sidereal period of Mars. If 3/4 of a Martian year was spent collecting samples and exploring the terrain around the landing site, calculate how long the Mars Robotic Lander expedition took!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY