BIOCHEMISTRY
BIOCHEMISTRY
8th Edition
ISBN: 9781319296186
Author: BERG
Publisher: MAC HIGHER
Question
Book Icon
Chapter 1, Problem 20P
Interpretation Introduction

Interpretation: The pH of the solution of sodium acetate with concentration of 0.1 M and 0.01 M is to be determined with varying volume of HCl added to it.

Concept introduction: To calculate the pH of the solution Henderson and Hasselbalch equation is used. The expression is as given below,

  pH=pKa+log[Base][Acid]

Where,

  • pKa is dissociation constant.
  • [Base] is the concentration of base.
  • [Acid] is the concentration of acid.

Expert Solution & Answer
Check Mark

Answer to Problem 20P

The pH values when different concentrations of HCl is added to the 0.1 M sodium acetate is 6.33, 6.02, 5.69, and 4.74. While in case of 0.01 M sodium acetate it is 5.22, 4.74, 3.54 and 1.35.

Explanation of Solution

In the given condition there are two cases which is mentioned as below,

Case I-

Concentration of first solution is 0.1 M and the concentrations of HCl added to this solution is 0.0025 M , 0.005 M , 0.01 M and 0.05 M .

Case II-

Concentration of the other solution is 0.01 M and the concentrations of HCl added to this solution is 0.0025 M , 0.005 M , 0.01 M and 0.05 M .

The volume is not provided; consider the volume of the buffer to be 1 L .

To calculate pH we need the Henderson−Hasselbalch equation which is as given below,

  pH=pKa+log[CH3COO][CH3COOH]   ....... (1)

Where,

  • pKa is dissociation constant.
  • [CH3COO] is the concentration of CH3COO ion.
  • [CH3COOH] is the concentration of CH3COOH acid.

For the first case,

   (a) Concentration of sodium acetate is 0.1 M and 0.0025 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO- after the reaction will be,

  [CH3COO]=0.10.0025[CH3COO]=0.0975

Substitute the values to equation (1),

  pH=4.74+log[0.0975][0.0025]pH=4.74+log39=4.74+1.591=6.33

The pH of the solution will be 6.33.

For the first case,

   (b)Concentration of sodium acetate is 0.1 M and 0.005 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.10.005[CH3COO]=0.095

Substitute the value to equation (1),

  pH=4.74+log[0.095][0.005]pH=4.74+log19=4.74+1.2787=6.02

The pH of the solution will be 6.02.

For the first case,

   (c) Concentration of sodium acetate is 0.1 M and 0.01 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.10.01[CH3COO]=0.09

Substitute the value to equation (1),

  pH=4.74+log[0.09][0.01]pH=4.74+log9=4.74+0.9542=5.69

The pH of the solution will be 5.69.

For the first case,

   (d) Concentration of sodium acetate is 0.1 M and 0.05 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.10.05[CH3COO]=0.05

Substitute the value to equation (1),

  pH=4.74+log[0.05][0.05]pH=4.74+log1=4.74+0=4.74

The pH of the solution will be 4.74.

For the second case,

   (a) Concentration of sodium acetate is 0.01 M and 0.0025 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.010.0025=0.0075

Substitute the value to equation (1),

  pH=4.74+log[0.0075][0.0025]=4.74+log3=5.22

The pH of the solution will be 5.22.

For the second case,

   (b) Concentration of sodium acetate is 0.01 M and 0.005 Mis added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.010.005=0.005

Substitute the value to equation (1),

  pH=4.74+log[0.005][0.005]=4.74+log(1)=4.74

The pH of the solution will be 4.74.

For the second case,

   (c) Concentration of sodium acetate is 0.01 M and 0.01 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.010.01=0

So, moles of acetic acids are 0.01 mole.

Concentration of acetic acid is:

  [CH3COOH]=0.01 mole1 L+1 L= 0.005 M (volume of salt and acid is the volume of solution)

The equation of Ka is given as,

  Ka=[CH3COO][H+][CH3COOH]   ....... (2)

Where,

  • Ka is dissociation constant.
  • [CH3COO] is the concentration of CH3COO ion.
  • [CH3COOH] is the concentration of CH3COOH acid.
  • [H+] is the concentration of hydrogen ion.

Substitute the values in the equation (2),

  1.8×105=[x][x][0.005x]

Rearrange for x,

  x21.8×105(0.005x)=0x=2.9×104

Substitute the value of x in equation of pH ,

  pH=log(2.9× 10 4)=3.54

The pH of the solution will be 3.54.

For the second case,

   (d) Concentration of sodium acetate is 0.01 M and 0.05 M HCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

In this case, the HCl is a strong acid and the formed acetic acid is a weak acid. Thus, HCl dominates the acidity. (Also the concentration of acetic acid is small).

The concentration of H+ after the reaction will be,

  [H+]=0.050.005=0.045

Substitute the value of concentration of hydrogen ion into pH expression we get,

  pH=log(0.045)=1.35

The pH of the solution will be 1.35

Conclusion

Thus the pH values when different concentrations of HCl is added to the 0.1 M sodium acetate is 6.33, 6.03, 5.69, and 4.74. While in case of 0.01 M sodium acetate it is 5.21, 4.74, 3.54 and 1.35.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draw the chemical structure of the tripeptide, HEL (L - amino acids), at pH = 7.0. Calculate isoelectric point
Can someone draw what this would look like?
How would I fix this?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305961135
    Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
    Publisher:Cengage Learning
    Text book image
    Curren'S Math For Meds: Dosages & Sol
    Nursing
    ISBN:9781305143531
    Author:CURREN
    Publisher:Cengage
    Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
  • Text book image
    Principles Of Pharmacology Med Assist
    Biology
    ISBN:9781337512442
    Author:RICE
    Publisher:Cengage
    Text book image
    Aquaculture Science
    Biology
    ISBN:9781133558347
    Author:Parker
    Publisher:Cengage
    Text book image
    Anatomy & Physiology
    Biology
    ISBN:9781938168130
    Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
    Publisher:OpenStax College
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Text book image
Curren'S Math For Meds: Dosages & Sol
Nursing
ISBN:9781305143531
Author:CURREN
Publisher:Cengage
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage
Text book image
Aquaculture Science
Biology
ISBN:9781133558347
Author:Parker
Publisher:Cengage
Text book image
Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College