Data Structures and Algorithms in C++
Data Structures and Algorithms in C++
2nd Edition
ISBN: 9780470383278
Author: Michael T. Goodrich
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Expert Solution & Answer
Book Icon
Chapter 1, Problem 1P

Explanation of Solution

Program code:

//include the required header files

#include<iostream>

#include<cstdlib>

//use std namespace

using namespace std;

//function that takes an array

//it will generate random integers

void Random_Order(int arr[],int n)

{

    //variable for counting random integers between 1 to 52

    int count=0;

   //while loop will iterate till count will equal to 52

    while(count<n)

    {

//flag to check random number is already generated or not

        int flag=0;

        //built in function to generate random number

        int random_number=(rand()%n)+1;

//for loop for checking if random number is exist in the array or not

        for(int i=0;i<count;i++)

        {

//if number is exist in the array, make flag as 1

            if(random_number==arr[i])

            {

                //set flag as 1

                flag=1;

            }

        }

        //if flag is 0, add into array

        if(flag==0)

        {

            //add number to the array

   arr[count]=random_number;

            //increment the count by 1

            count++;

        }

    }

    //create a variable c

    int c=0;

    //print the statement

    cout<<"52 Random Numbers:\n\n";

    //displaying numbers

    //10 integers in each row

    for(int i=0;i<n;i++)

    {

        //print the values

        cout<<arr[i]<<"\t";

        //increment c by 1

        c++;

        //if the value of c is 10

        if(c==10)

        {

            //print new line

            cout<<"\n";

            //set the value c is 0

            c=0;

        }

    }

    //print new line

    cout<<"\n";

}

//main method

int main()

{

    //create an integer variable n

    int n=52;

    //create an integer array arr

    int arr[n];

    //call the method Random_Order()

    Random_Order(arr,n);

}

Explanation:

The above snippet of code is used print 52 random numbers using “rand()” function. In the code,

  • Include the required header files.
  • Use the “std” namespace.
  • Define “Random_Order()” function.
    • Declare the required variable “count”.
    • Iterate a “while” loop.
      • Declare an integer variable “flag”.
      • Call built in function “rand()” to get the random number and save it to the variable “random_number”.
      • Iterate a “for” loop to check the number is already exist in the array.
        • If the value of “random_number” is equal to value at “arr[i]”.
          • Set the value of “flag” as “1”.
      • If the value of “flag” is “0”...

Blurred answer
Students have asked these similar questions
using r language for integration theta = integral 0 to infinity (x^4)*e^(-x^2)/2 dx (1) use the density function of standard normal distribution N(0,1) f(x) = 1/sqrt(2pi) * e^(-x^2)/2 -infinity <x<infinity as importance function and obtain an estimate theta 1 for theta set m=100 for the estimate whatt is the estimate theta 1? (2)use the density function of gamma (r=5 λ=1/2)distribution f(x)=λ^r/Γ(r) x^(r-1)e^(-λx) x>=0 as importance function and obtain an estimate theta 2 for theta set m=1000 fir the estimate what is the estimate theta2? (3) use simulation (repeat 1000 times) to estimate the variance of the estimates theta1 and theta 2 which one has smaller variance?
using r language A continuous random variable X has density function f(x)=1/56(3x^2+4x^3+5x^4).0<=x<=2 (1) secify the density g of the random variable Y you find for the acceptance rejection method. (2) what is the value of c you choose to use for the acceptance rejection method (3) use the acceptance rejection method to generate a random sample of size 1000 from the distribution of X .graph the density histogram of the sample and compare it with the density function f(x)
using r language a continuous random variable X has density function f(x)=1/4x^3e^-(pi/2)^4,x>=0  derive the probability inverse transformation F^(-1)x where F(x) is the cdf of the random variable X

Chapter 1 Solutions

Data Structures and Algorithms in C++

Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Java random numbers; Author: Bro code;https://www.youtube.com/watch?v=VMZLPl16P5c;License: Standard YouTube License, CC-BY