Concept explainers
(a)
Interpretation:
The wavelength of the ejected electron having wavelength of
Concept Introduction:
de Broglie relation:
Mathematically, de Broglie relation can be represented as given below.
Where,
(a)

Answer to Problem 1B.15E
The wavelength of the ejected electron having wavelength of
Explanation of Solution
Given that, the velocity of electron is
The de Broglie relation is given below.
By plugging all data in the above equation, the value of wavelength of the electron can be calculated.
Therefore, the wavelength of the ejected electron having wavelength of
(b)
Interpretation:
The energy required to remove the electron from the metal has to be calculated.
Concept Introduction:
Energy of a photon can be expressed mathematically as given below.
Where, h is the Planck’s constant,
(b)

Answer to Problem 1B.15E
The energy required to remove the electron from the metal is
Explanation of Solution
Given that, the frequency of the radiation is
Therefore, the energy required to remove the electron from the metal is
(c)
Interpretation:
The wavelength of the radiation that caused photoejection of electron with a velocity of
Concept Introduction:
If the energy of the photon is greater than work function, then an electron can be ejected with a kinetic energy,
Where,
(c)

Answer to Problem 1B.15E
The wavelength of the radiation that caused photoejection of electron is
Explanation of Solution
Given that, the speed of an electron that is emitted from the surface of a sample of chromium metal by a photon is
The expression of kinetic energy is given below.
Where,
By plugging all data in the above equation, the value of kinetic energy can be calculated.
The energy of incoming photon can be calculated as given below.
By plugging all data in the above equation, the energy of incoming photon can be calculated.
Therefore, the wavelength of the radiation that caused photoejection of electron is
(d)
Interpretation:
The kind of
Concept Introduction:
The wavelengths of electromagnetic radiation and their corresponding frequencies are given below in the table.
Radiation type | Frequency / | Wavelength / | Energy of photon / |
x-rays and | |||
Ultraviolet | |||
Visible light | |||
Violet | |||
Blue | |||
Green | |||
Yellow | |||
Orange | |||
Red | |||
Infrared | |||
Microwaves and radio waves |
(d)

Explanation of Solution
The wavelength of the radiation that caused photoejection of electron is
Therefore, the kind of electromagnetic radiation used is X- rays.
Want to see more full solutions like this?
Chapter 1 Solutions
CHEMICAL PRINCIPLES PKG W/SAPLING
- true or false Using the following equilibrium, if heat is added the equilibrium will shift toward the reactants. N2(g) + 3H2(g) ⇔ 2NH3(g) + heatarrow_forwardTrue or False Using the following equilibrium, if heat is added the equilibrium will shift toward the products. N2O4(g) + heat ⇔ 2NO2(g)arrow_forwardtrue or false Using the following equilibrium, if solid carbon is added the equilibrium will shift toward the products. C(s) + CO2(g) ⇔ 2CO(g)arrow_forward
- Provide the complete mechanism for the reaction below. You must include appropriate arrows,intermediates, and formal charges. Please also provide a reason to explain why the 1,4-adduct is preferred over the 1,3-adduct.arrow_forwardWhich of the following pairs are resonance structures of one another? I. III. || III IV + II. :0: n P !༠ IV. EN: Narrow_forwardPredict the major organic product(s) and byproducts (either organic or inorganic) for thefollowing reactions.arrow_forward
- A 8.25 g sample of aluminum at 55°C released 2500 J of heat. The specific heat of aluminum is 0.900 J/g°C. The density of aluminum is 2.70 g/mL. Calculate the final temperature of the aluminum sample in °C.arrow_forwardPredict the major organic product(s) and byproducts (either organic or inorganic) for thefollowing reactions.arrow_forwardPredict the major organic product(s) and byproducts (either organic or inorganic) for thefollowing reaction.arrow_forward
- please helparrow_forwardExperiment 1 Data Table 1: Conservation of Mass - Initial Mass Data Table 1 Data Table 2 Data Table 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Reaction Mass of test tube and 5.0% HC₂H₂O2 (g) # (A) (B) Mass of NaHCO, (g) Mass of balloon and NaHCO, (g) (C) 0.10 1 0829 14.38g 0.20 2 0.929 14.29g 0.35 1.00g 3 14.25g 0.50 1.14g 14.29 Experiment 1 Data Table 2: Moles of HC2H3O2 Reaction Volume of Mass of Moles of HC₂H₂O₂ 5.0% Vinegar (g) (ML) 5.0 0.25 0042 mol 2 5.0 0.25 0042 mol 3 5.0 0.25 0042 mol 5.0 0.25 0042 mol Experiment 1 Data Table 3: Moles of NaHCO3 Reaction Mass of NaHCO (g) 10g 20g 35g 50g Experiment 1 Data Table 4: Theoretical Yield of CO₂ Reaction # 1 2 3 Experiment 1 Total mass before reaction (g) (D=A+C) 15.29 15.21g 15.25g 15.349 Exercise 1 Data Table 1 Data Table 2 Data Table 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Exercise 1- Data Table 1 Data Table 2 DataTable 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Exercise 1- Moles of NaHCO 0012 mol 0025 mol 0044 mol 0062 mol…arrow_forwardThe chemical reaction you investigated is a two-step reaction. What type of reaction occurs in each step? How did you determine your answer?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





