(a)
Interpretation:
The type of orbital of ground state zinc atom from which an electron will be removed to form
Concept Introduction:
Electronic configuration: The electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals.
Electrons occupy the lowest energy orbitals. The increasing order of orbital energy is
The energy order of the orbital for the first three periods is as follows,
The orbital which is closer to the nucleus has lower energy; therefore the
In general, the orbitals can hold maximum of two electrons, the two electrons must have opposite spin.
The subshell ordering by Aufbau principle is given below,
(b)
Interpretation:
The type of orbital of ground state chlorine atom from which an electron will be removed to form
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The type of orbital of ground state aluminum atom from which an electron will be removed to form
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The type of orbital of ground state copper atom from which an electron will be removed to form
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
CHEMICAL PRINCIPLES PKG W/SAPLING
- 5.) Electron Configurations for Ions: Supply the ground state electron configurations for the following ions. You many use the short-hand notation (e.g. Na*: [He]2s 2p°). (a) N (b) Mg*. (c) O (d) Sc* (e) Sn2+ (f) Ar 6.) Formulas of Ions: Predict the formulas of the most stable ions of the following elements (a) Na (b) Mg (c) S (d) Al (e) Br (f) Parrow_forward7. Which element has the smallest first ionization energy? (a) Cs (b) Ga (c) K (d) Bi (e) As 8. Which element has the smallest second ionization energy? (a) Mg (b) Li (c) S (d) O (e) Ca 9. Which of the following sets contain all linear molecules? (a) H2S, HCN, CO2. (b) HCN, O2, CO2 (c) H2O, CO, Cl2. (d) H2S, CO, CO2. (e) BF3, Cl2, O2 10. The molecular geometry of SnCl3-ion is: (a) trigonal planar (b) T-shaped. (c) trigonal pyramidal. (d) Tetrahedral (e) see-saw 11. The geometry of the molecule SPC13 is best described as: (a) square planar (b) trigonal pyramidal (c) trigonal bipyramidal. (d) octahedral (e) tetrahedral 12. The O-S-Cl bond angles in O2SCl2 are expected to be approximately: (a) 90° (b) 109.5° (c) 120° (d)180 ° (e) 90° and 120°arrow_forwardGiven the following types of atoms, decide which type of bonding, ionic or covalent, is most likely to occur: (a) two oxygen atoms; (b) four hydrogen atoms and one carbon atom; (c) a potassium atom (3919 K) and a fluorine atom (19 9F).arrow_forward
- Testosterone is an anabolic steroid. The structure of testosterone is shown below. What is the idealised bond angle at the indicated atom (ii) ? Hint: atom (iv) has been completed for you as an example. (iv) bond angle: 109.5°, geometry of the electron pairs: tetrahedral, shape of the bonds: tetrahedral ·····|||I H ····||||I ii ivarrow_forwardAt large interatomic separations, an alkali halide moleculeMX has a lower energy as two neutral atoms, M + X; atshort separations, the ionic form (M+)(X-) has a lowerenergy. At a certain distance, Rc, the energies of the twoforms become equal, and it is near this distance that theelectron will jump from the metal to the halogen atom during a collision. Because the forces between neutral atomsare weak at large distances, a reasonably good approximation can be made by ignoring any variation in potentialV(R) for the neutral atoms between Rc and R - `. For theions in this distance range, V(R) is dominated by theirCoulomb attraction.(a) Express Rc for the first ionization energy of the metalM and the electron affinity of the halogen X.(b) Calculate Rc for LiF, KBr, and NaCl using data fromAppendix F.arrow_forward5) (a) Arrange the following substances in the order in which you would expect their boiling points to increase: CCI4, Cl, CINO, N,. Explain your answer. (b) Write the condensed electron configuration of mercury (Hg) and an orbital diagram for the electron configuration of tin (Sn).arrow_forward
- Determine the number of valence electrons and give the electronic confi guration of the valence electrons of each element: (a) nitrogen; (b) potassium.arrow_forwardUse the periodic table to (i) predict electron configurations for the following species: Arsenic ion, As3– Magnesium ion, Mg2+ Vanadium(II) ion, V2+ (ii) Write the electron configurations of each species in the noble gas notation. (iii) Draw an orbital diagram to represent 1 c above. Draw the Lewis electron dot structures of the following chemical species. In each case you must say whether or not the central atom obeys the Octet Rule. CS2 and H2S CF4 and SiH4 NH2Cl CO32– and BF3 PCl5 ClF3, XeF2, Calculate the formal charge on the Sulphur atom in the Sulphate anion structure shown below(picture attatched) Give the electron-pair and molecular geometries for NF3 and XeF4.arrow_forward(a) Use orbital diagrams to illustrate what happens when anoxygen atom gains two electrons. (b) Why does O3 - not exist?arrow_forward
- Write the electron configurations for (a) Ca2+, (b) Co3+, and (c) S2-.arrow_forwardFor two adjacent ions, the net potential energy is: А В + rn EN - - r where A, B and n are constants, r is in nm and E is in eV. (a) Find the expression for the bonding energy Eg in terms of A, B and n. (b) For two pairs of ions, with A = 1.436, B = 5.86 x 106 and n = 9, solve for ro and Eg.arrow_forwardWhich of the following sets contains an ionic compound, a molecular compound, and an acid, in that order? (A) Al2O3, B2O3, CH3OH; (B) CaCl2, NH4Cl, HCl; (C) CH3F, COCl2, HOCl; (D) CoCl2, COCl2, HClO2.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY