(a)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(a)
Explanation of Solution
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value
The statements are given below:
Qualitative statement: Water is a colourless liquid.
Quantitative statement: Water freezes at
(b)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(b)
Explanation of Solution
The statements are given below:
Qualitative statement: carbon is a black colour solid.
Quantitative statement: carbon has density of
(c)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(c)
Explanation of Solution
The statements are given below:
Qualitative statement: iron rusts easily
Quantitative statement iron density is
(d)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(d)
Explanation of Solution
The statements are given below:
Qualitative statement: hydrogen gas is a Colourless gas
Quantitative statement: hydrogen gas melts at
(e)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative &Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(e)
Explanation of Solution
The statements are given below:
Qualitative statement: sucrose tastes sweet
Quantitative statement: 179 g of sucrose dissolve in 100g of
(f)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(f)
Explanation of Solution
The statements are given below:
Qualitative statement: salt Taste salty
Quantitative statement: salt Melts at
(g)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(g)
Explanation of Solution
The statements are given below:
Qualitative statement: mercury Liquid at room temperature
Quantitative statement: mercury Boils at
(h)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(h)
Explanation of Solution
The statements are given below:
Qualitative statement: gold is a precious metal.
Quantitative statement: gold have Density of
(i)
Interpretation:
The following qualitative statement&quantitative statement should be written down with the explanation.
Concept Introduction:
Qualitative properties: These are the properties observed and can’t be measured with the numerical value.
Quantitativeproperties:
These are the properties observed and can be measured with the numerical value.
Quantitative statement:
Quantitative data is information about quantities.
Example: weight measurement, shoes size, length etc.
Qualitative statement:
It is the information about the quality.
Example: Softness of your skin, the color of the sky, etc.
Differentiating between Qualitative & Quantitative statement:
A qualitative property of a system doesn’t required manuscript measurement.
A quantitative property of a system requires measurement and can be expressed with a number.
(i)
Explanation of Solution
The statements are given below:
Qualitative statement: air is a mixture of gases
Quantitative statement: air contains 20% oxygen by volume
Want to see more full solutions like this?
Chapter 1 Solutions
Chemistry: Atoms First
- In three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- 8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward6. Draw the products) formed from the following reactions. (a) HIarrow_forward
- Don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning