Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.65QP
Determine whether each of the following describes a physical change or a chemical change: (a) The helium gas inside a balloon tends to leak out after a few hours. (b) A flashlight beam slowly gets dimmer and finally goes out. (c) Frozen orange juice is reconstituted by adding water to it. (d) The growth of plants depends on the sun’s energy in a process called photosynthesis. (e) A spoonful of sugar dissolves in a cup of coffee
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
Use excel to plot the following titration data. Once you have done your plot, make sure to label the axes
correctly. Use your graph to determine the pK, for the weak acid. Attach your plot to the back of this
worksheet.
A 1.0M solution of weak acid was titrated with a base and the following data was collected.
Equivalents of Base
pH observed
0.05
3.4
0.15
3.9
0.25
4.2
0.40
4.5
0.60
4.9
0.75
5.2
0.85
5.4
0.95
6.0
Chapter 1 Solutions
Chemistry: Atoms First
Ch. 1.2 - illustrates conversions between these two...Ch. 1.2 - Prob. 1PPACh. 1.2 - According to the website of the National...Ch. 1.2 - If a single degree on the Celsius scale is...Ch. 1.2 - A body temperature above 39C constitutes a high...Ch. 1.2 - The average temperature at the summit of Mt....Ch. 1.2 - Prob. 2PPBCh. 1.2 - If a single degree on the Fahrenheit scale is...Ch. 1.2 - Prob. 1.3WECh. 1.2 - Given that 20.0 mL of mercury has a mass of 272 g....
Ch. 1.2 - Prob. 3PPBCh. 1.2 - Using the picture of the graduated cylinder and...Ch. 1.3 - Determine the number of significant figures in the...Ch. 1.3 - Determine the number of significant figures in the...Ch. 1.3 - Using scientific notation, express the number one...Ch. 1.3 - Perform the following arithmetic operations and...Ch. 1.3 - Perform the following arithmetic operations, and...Ch. 1.3 - Prob. 5PPBCh. 1.3 - Prob. 1.6WECh. 1.3 - Prob. 6PPACh. 1.3 - Prob. 6PPBCh. 1.3 - Several pieces of aluminum metal with a total mass...Ch. 1.4 - The Food and Drug Administration (FDA) recommends...Ch. 1.4 - The American Heart Association recommends that...Ch. 1.4 - A gold nugget has a mass of 0.9347 oz. What is its...Ch. 1.4 - The diagram contains several objects that are...Ch. 1.4 - Prob. 1.8WECh. 1.4 - Prob. 8PPACh. 1.4 - The density of mercury is 13.6 g/cm3. What is its...Ch. 1.4 - Each diagram [(i) or (ii)] shows the objects...Ch. 1 - Prob. 1.1QPCh. 1 - Explain what is meant by the scientific method.Ch. 1 - What is the difference between a hypothesis and a...Ch. 1 - Classily each of the following statements as a...Ch. 1 - Classify each of the following statements as a...Ch. 1 - Name the SI base units that are important in...Ch. 1 - Write the numbers represented by the following...Ch. 1 - What units do chemists normally use for the...Ch. 1 - What is the difference between mass and weight? If...Ch. 1 - Prob. 1.10QPCh. 1 - Prob. 1.11QPCh. 1 - Prob. 1.12QPCh. 1 - Prob. 1.13QPCh. 1 - Prob. 1.14QPCh. 1 - The density of water at 40C is 0.992 g/mL. What is...Ch. 1 - Prob. 1.16QPCh. 1 - Prob. 1.17QPCh. 1 - Prob. 1.18QPCh. 1 - Prob. 1.19QPCh. 1 - Prob. 1.20QPCh. 1 - Indicate which of the following numbers is an...Ch. 1 - Prob. 1.22QPCh. 1 - Distinguish between the terms accuracy and...Ch. 1 - Express the following numbers in scientific...Ch. 1 - Prob. 1.25QPCh. 1 - Prob. 1.26QPCh. 1 - Express the answers to the following calculations...Ch. 1 - Determine the number of significant figures in...Ch. 1 - Prob. 1.29QPCh. 1 - Carry out the following operations as if they were...Ch. 1 - Prob. 1.31QPCh. 1 - Three students (A, B, and C) are asked to...Ch. 1 - Prob. 1.33QPCh. 1 - Prob. 1.34QPCh. 1 - Prob. 1.35QPCh. 1 - The density of the metal bar shown is 8.16 g/cm3....Ch. 1 - The following shows an experiment used to...Ch. 1 - Prob. 1.38QPCh. 1 - Prob. 1.39QPCh. 1 - Prob. 1.40QPCh. 1 - Carry out the following conversions: (a) 1.1 1022...Ch. 1 - The average speed of helium at 25C is 1255 m/s....Ch. 1 - Prob. 1.43QPCh. 1 - Prob. 1.44QPCh. 1 - Prob. 1.45QPCh. 1 - Prob. 1.46QPCh. 1 - Prob. 1.47QPCh. 1 - Prob. 1.48QPCh. 1 - Prob. 1.49QPCh. 1 - Prob. 1.50QPCh. 1 - Prob. 1.51QPCh. 1 - Prob. 1.52QPCh. 1 - The density of ammonia gas under certain...Ch. 1 - Prob. 1.54QPCh. 1 - Prob. 1.55QPCh. 1 - Prob. 1.56QPCh. 1 - Prob. 1.57QPCh. 1 - Classify each of the following as a pure...Ch. 1 - What is the difference between a qualitative...Ch. 1 - Prob. 1.60QPCh. 1 - Prob. 1.61QPCh. 1 - Determine which of the following properties are...Ch. 1 - Prob. 1.63QPCh. 1 - Determine whether the following statements...Ch. 1 - Determine whether each of the following describes...Ch. 1 - Determine whether each of the following describes...Ch. 1 - ADDITIONAL PROBLEMS 1.67 Using the appropriate...Ch. 1 - Prob. 1.68QPCh. 1 - Winch of the following statements describe...Ch. 1 - Prob. 1.70QPCh. 1 - Prob. 1.71QPCh. 1 - In determining the density of a rectangular metal...Ch. 1 - Prob. 1.73QPCh. 1 - Prob. 1.74QPCh. 1 - Prob. 1.75QPCh. 1 - Prob. 1.76QPCh. 1 - A piece of platinum metal weighing 234.0 g is...Ch. 1 - The experiment described in Problem 1.77 is a...Ch. 1 - A copper sphere has a mass of 2.17 103 g. and its...Ch. 1 - Lithium has a very low density (density = 0.53...Ch. 1 - Prob. 1.81QPCh. 1 - Vanillin (used to flavor vanilla ice cream and...Ch. 1 - Prob. 1.83QPCh. 1 - Prob. 1.84QPCh. 1 - Prob. 1.85QPCh. 1 - Prob. 1.86QPCh. 1 - Prob. 1.87QPCh. 1 - Magnesium is used in alloys, in batteries, and in...Ch. 1 - Prob. 1.89QPCh. 1 - The surface area and average depth of the Pacific...Ch. 1 - Calculate the percent error for the following...Ch. 1 - Prob. 1.92QPCh. 1 - Chalcopyrite contains 34.63 percent copper by...Ch. 1 - Prob. 1.94QPCh. 1 - One gallon of gasoline in an automobile's engine...Ch. 1 - Prob. 1.96QPCh. 1 - The worlds total petroleum reserve is estimated at...Ch. 1 - Prob. 1.98QPCh. 1 - Prob. 1.99QPCh. 1 - Chlorine is used to disinfect swimming pools. The...Ch. 1 - Prob. 1.101QPCh. 1 - Prob. 1.102QPCh. 1 - Prob. 1.103QPCh. 1 - Prob. 1.104QPCh. 1 - Prob. 1.105QPCh. 1 - Prob. 1.106QPCh. 1 - Prob. 1.107QPCh. 1 - Prob. 1.108QPCh. 1 - Prob. 1.109QPCh. 1 - Prob. 1.110QPCh. 1 - In January 2009, the National Aeronautics and...Ch. 1 - Prob. 1.112QPCh. 1 - Prob. 1.113QPCh. 1 - Prob. 1.114QPCh. 1 - Prob. 1.115QPCh. 1 - The composition of pennies has changed over the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 1. Write the dissociation reaction then calculate the pH for the following STRONG substances. a. 2.5x103 M HBr b.5.6x10 M NaOHarrow_forward74. A contour map for an atomic orbital of hydrogen is shown below for the xy and xz planes. Identify the type (s, p, d, f, g . . .) of orbital. axis x axis z axis Cooo xy planearrow_forwardA buffer is prepared by adding 0.50 mol of acetic acid (HC2H3O2) and 0.75 mol of sodium acetate (NaC2H3O2) to enough water to form 2.00L solution. (pKa for acetic acid is 4.74) Calculate the pH of the buffer.arrow_forward
- Modify the given carbon skeleton to draw the major product of the following reaction. If a racemic mixture of enantiomers is expected, draw both enantiomers. Note: you can select a structure and use Copy and Paste to save drawing time. HBr کی CH3 کی Edit Drawingarrow_forwardSort the following into the classification for a reaction that is NOT at equilibrium versus a reaction system that has reached equilibrium. Drag the appropriate items to their respective bins. View Available Hint(s) The forward and reverse reactions proceed at the same rate. Chemical equilibrium is a dynamic state. The ratio of products to reactants is not stable. Reset Help The state of chemical equilibrium will remain the same unless reactants or products escape or are introduced into the system. This will disturb the equilibrium. The concentration of products is increasing, and the concentration of reactants is decreasing. The ratio of products to reactants does not change. The rate at which products form from reactants is equal to the rate at which reactants form from products. The concentrations of reactants and products are stable and cease to change. The reaction has reached equilibrium. The rate of the forward reaction is greater than the rate of the reverse reaction. The…arrow_forwardPlace the following characteristics into the box for the correct ion. Note that some of the characteristics will not be placed in either bin. Use your periodic table for assistance. Link to Periodic Table Drag the characteristics to their respective bins. ▸ View Available Hint(s) This anion could form a neutral compound by forming an ionic bond with one Ca²+. Reset Help This ion forms ionic bonds with nonmetals. This ion has a 1- charge. This is a polyatomic ion. The neutral atom from which this ion is formed is a metal. The atom from which this ion is formed gains an electron to become an ion. The atom from which this ion is formed loses an electron to become an ion. This ion has a total of 18 electrons. This ion has a total of 36 electrons. This ion has covalent bonds and a net 2- charge. This ion has a 1+ charge. Potassium ion Bromide ion Sulfate ionarrow_forward
- U Consider the following graph containing line plots for the moles of Product 1 versus time (minutes) and the moles of Product 2 versus time in minutes. Choose all of the key terms/phrases that describe the plots on this graph. Check all that apply. ▸ View Available Hint(s) Slope is zero. More of Product 1 is obtained in 12 minutes. Slope has units of moles per minute. plot of minutes versus moles positive relationship between moles and minutes negative relationship between moles and minutes Slope has units of minutes per moles. More of Product 2 is obtained in 12 minutes. can be described using equation y = mx + b plot of moles versus minutes y-intercept is at (12,10). y-intercept is at the origin. Product Amount (moles) Product 1 B (12,10) Product 2 E 1 Time (minutes) A (12,5)arrow_forwardSolve for x, where M is molar and s is seconds. x = (9.0 × 10³ M−². s¯¹) (0.26 M)³ Enter the answer. Include units. Use the exponent key above the answer box to indicate any exponent on your units. ▸ View Available Hint(s) ΜΑ 0 ? Units Valuearrow_forwardLearning Goal: This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this: 35 Cl 17 In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is: It is also correct to write symbols by leaving off the atomic number, as in the following form: atomic number mass number Symbol 35 Cl or mass number Symbol This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written. Watch this video to review the format for written symbols. In the following table each column…arrow_forward
- need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardneed help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY