Concept explainers
(a)
Interpretation:
In
Concept introduction:
Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit. The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.
To determine the number of significant figures in a quantity following steps are followed.
1. The quantity must has a decimal point.
2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.
3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.
4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as
5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.
(b)
Interpretation:
In
Concept introduction:
Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.
The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.
To determine the number of significant figures in a quantity following steps are followed.
1. The quantity must has a decimal point.
2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.
3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.
4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as
5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.
(c)
Interpretation:
In
Concept introduction:
Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.
The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.
To determine the number of significant figures in a quantity following steps are followed.
1. The quantity must has a decimal point.
2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.
3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.
4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as
5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.
(d)
Interpretation:
In
Concept introduction:
Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.
The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.
To determine the number of significant figures in a quantity following steps are followed.
1. The quantity must has a decimal point.
2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.
3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.
4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as
5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
CHEM 212:CHEMISTSRY V 2
- Provide the unknown for the given data.arrow_forwardDraw the Lewis structures of two methanol (CH3OH) molecules and depict hydrogenbonding between them with dashed lines. Show all lone pairs. Provide a thorough analysis to apply concept idea into other problems.arrow_forwardSteps and explanation please.arrow_forward
- How could you distinguish between each pair of compounds below using IR? For each pair citeone bond and it’s frequency that you could use to distinguish between them. Please provide thorough analysis to apply into further problems.arrow_forwardSteps and explanation please.arrow_forwardSteps and explanation on how to solve.arrow_forward
- Provide the unknown for the given data.arrow_forwardElectron Arrangement A. Fill in the following chart relating to levels, sublevels and orbitals. Levels (n) 1 Sublevels # of Orbitals per sublevel 2 3 4 # of Electrons per sublevel Total Electrons per level Complete: B. Answer the following questions related to levels, sublevels, orbitals and electrons. 1. How many sublevels are in energy level 2? 2. How many orbitals are in a 4f sublevel? 3. How many electrons can level 3 hold? 4. How many orbitals are in level 4? 5. How many electrons can sublevel 2p hold? 11arrow_forwardProvide the unknown for the given details.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY