Concept explainers
1.39 Make the following metric conversions:
(a)964 mLto L
(b)275 mm to cm
(c) 45.7 kg to g
(d) 475 cm to m
(e)21.64 cc to mL
(f) 3.29 L to cc
(g)0.044 L to mL
(h)711 g to kg
(1) 63.7 mL to cc
(j) 0.073 kg to mg
(k) 83.4 m to mm
(1) 361 mg to g
(a)
Interpretation:
The conversion of 96.4 mL to L should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from mL to L using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 96.4 mL to L:
(b)
Interpretation:
The conversion of 275 mm to cm should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from mm to cm using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 275 mm to cm,
(c)
Interpretation:
The conversion of 45.7 kg to g should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from kg to g using the conversion factor,
Answer to Problem 1.39P
Explanation of Solution
Converting 45.7 kg to g:
(d)
Interpretation:
The conversion of 475 cm to m should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from cm to m using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 475 cm to m:
(e)
Interpretation:
The conversion of 21.64 cc to mL should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted from cc to mL using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 21.6 cc to mL:
(f)
Interpretation:
The conversion of 3.29 L to cc should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted from L to cc using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 3.29 L to cc:
(g)
Interpretation:
The conversion of 0.044 L to mL should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 0.044 L to mL:
(h)
Interpretation:
The conversion of 711 g to kg should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from g to kg using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 711 g to kg:
(i)
Interpretation:
The conversion of 63.7 mL to cc should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted from mL to cc using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 63.7 mL to cc:
(j)
Interpretation:
The conversion of 0.073 kg to mg should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from kg to mg using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 0.073 kg to mg:
(k)
Interpretation:
The conversion of 83.4 m to mm should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from m to mm using the following conversion factor.
Answer to Problem 1.39P
Explanation of Solution
Converting 83.4 m to mm:
(i)
Interpretation:
The conversion of 361 mg to g should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from mg to g using the conversion factor,
Answer to Problem 1.39P
Explanation of Solution
Converting 361 mg to g:
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- 3B: Convert the starting material into the chiral epoxytriol below. OH OH = OH OHarrow_forward3D: Convert the aromatic triketone to the 1,3,5-triethylcyclohexane shown below. ہوئےarrow_forwardIndicate how to find the energy difference between two levels in cm-1, knowing that its value is 2.5x10-25 joules.arrow_forward
- The gyromagnetic ratio (gamma) for 1H is 2.675x108 s-1 T-1. If the applied field is 1,409 T what will be the separation between nuclear energy levels?arrow_forwardChances Ad ~stract one 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $4th total Statistical pro 21 total 2 H A 2H 래 • 4H totul < 3°C-H werkest bund - abstraction he leads to then mo fac a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? рос 6 -વા J Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Clarrow_forwardWhat is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forward
- Last Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forwardI find the solution way too brief and unsatisfactory as it does not clearly explain the solution provided in the problem.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY