Electric machinery fundamentals
5th Edition
ISBN: 9780073529547
Author: Chapman, Stephen J.
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.16P
The core shown in Figure P1-2 has the flux
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It's urgent please solve asap
10. A potential difference of 250 V is applied to a field winding at 15-C and the current is 5 A. What will be the
temperature of the winding when current has fallen to 3.91 A applied voltage being constant. Assume temperature
coefficient at 15'C is equal to 1/254.5 per °C
A ferromagnetic core is shown in Figure Pl-2. The depth of the core is 5 cm. The other dimensions of
the core are as shown in the figure. Find the value of the current that will produce a flux of 0.005 Wb.
With this current, what is the flux density at the top of the core? What is the flux density at the right side
of the core? Assume that the relative permeability of the core is 800.
1-5.
10 cm-
5em
20 em
15 cm
15 cm
15 cm
Coe depth - Scm
SOLUTION There are three regions in this core. The top and bottom form one region, the left side forms a
second region, and the right side forms a third region. If we assume that the mean path length of the flux
is in the center of each leg of the core, and if we ignore spreading at the corners of the core, then the path
lengths are I, = 2(27.5 cm) = 55 cm, I, = 30 cm, and /, = 30 cm. The reluctances of these regions are:
Chapter 1 Solutions
Electric machinery fundamentals
Ch. 1 - What is torque? What role does torque play in the...Ch. 1 - What is Amperes law?Ch. 1 - What is magnetizing intensity? What is magnetic...Ch. 1 - How does the magnetic circuit concept aid in the...Ch. 1 - What is reluctance?Ch. 1 - What is a ferromagnetic material? Why is the...Ch. 1 - How does the relative permeability of a...Ch. 1 - Prob. 1.8QCh. 1 - What are eddy current losses? What can be done to...Ch. 1 - Why are all cores exposed to ac flux variations...
Ch. 1 - What is Faraday law?Ch. 1 - What conditions are necessary for a magnetic field...Ch. 1 - What conditions are necessary for a magnetic field...Ch. 1 - Prob. 1.14QCh. 1 - The linear machine in Figure 1-19 is running at...Ch. 1 - Just how does a decrease in flux produce an...Ch. 1 - Will current be leading or lagging voltage in an...Ch. 1 - What are real, reactive, and apparent power? What...Ch. 1 - What is power factor?Ch. 1 - Prob. 1.1PCh. 1 - A flywheel with a moment of inertia of 4kgm2 is...Ch. 1 - A force of 10 N is applied to a cylinder of radius...Ch. 1 - A motor is supplying 50Nm of torque to its load....Ch. 1 - A ferromagnetic core is shown in Figure P1-2. The...Ch. 1 - A ferromagnetic core with a relative permeability...Ch. 1 - A two-legged core is shown in Figure P1-4. The...Ch. 1 - A core with three legs is shown in Figure P1-5....Ch. 1 - A two-legged core is shown in Figure P1-4. The...Ch. 1 - A wire is shown in Figure P1-7 that is moving in...Ch. 1 - Repeat Problem 1-10 for the wire in Figure P1-8.Ch. 1 - Prob. 1.12PCh. 1 - A core with three legs is shown in Figure P1-10....Ch. 1 - A two-legged magnetic core with an air gap is...Ch. 1 - A transformer core with an effective mean path...Ch. 1 - The core shown in Figure P1-2 has the flux shown...Ch. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Demonstrate that Equation (1-59) can be derived...Ch. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - For the linear machine of Problem 1-22: When this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ferromagnetic core is shown in Figure P1-2. The depth of the core is 5 cm. The other dimensions of the core are as shown in the figure. Find the value of the current that will produce a flux of 0.005 Wb. With this current, what is the flux density at the top of the core? What is the flux density at the right side of the core? Assume that the relative permeability of the core is 800. -10cm- -20 cm- 500 turns a. 670 kA t/Wb b. 330 kA t/Wb c. 500 kA t/Wb d. 256 kA t/Wb Core depth = 5 cm 15cm + 15cm 15cm 5 Earrow_forwardA toroidal core with a mean circumference of 100 cm and a cross-sectional area of 10 cm2 is wound with 500 turns of wire. What current would be required to generate a flux of 1 mWb in the core. Assume the core has a relative permeability of 800arrow_forward1.Consider the magnetic core below.All dimensions are shown on the figure. The core is made up of legs with 2 different cross-sectional areas.The depth of core is 10cm.The relative permeability of the core is 2000. The current in the magnetising coil is 1 A. The number of turns of the coil is 2000.Calculate: (i)the reluctances and draw the magnetic circuit (ii)the flux in the core (iii)Flux densities B and field intensities H in legs having different cross-sectional areas. (iv)Verify Ampere's Law. Depth: 10 cm I=1A 20cm 2000 Turns 65cm 15cm 15cm 50cm 15cm ndo un ofarrow_forward
- A current in a 250 turn coil is 2.25A, wound in a core that has a reluctance of 12,000 AT/Wb. What is the resulting flux density (in Tesla), if the area of the core is 8cm²?arrow_forwardA flux of 0.0016 Wb flows in a silicon sheet steel coil/core. The arrangement appears as shown below with the following dimensions: Ac = 0.0025 m? Core/gap area: Flux path length: le = 0.350 m lg = 0.0015 m N = 500 Air gap length: Number of turns: %3D A. What is the current, I, through the winding? B. What is the energy stored in the inductance? C. Assume that the current is given by i =9.75 sin (3147) A. What is the RMS voltage that would appear across the winding? D. Assume that the gap is removed from the arrangement with the flux path remaining at 0.350 m. For a flux of 0.0016 Wb, what is the inductance of the arrangement? E. What is the energy stored in the inductance with the gap removed?arrow_forwardPls answer asap and correctlyarrow_forward
- A magnetic circuit has a length of 100 cm and cross-sectional area of 5 square cm. The total flux is 10 x 10 webers. The coil has 100 turns and current of 4 amperes. What is the magnetic strength? a. 500 AT/m b. 400 AT/m c. 350 AT/m d. 450 AT/marrow_forward. An iron core has a cross-sectional area of 10-3 square meter and mean circumference of 1 meter. The relative permeability of the material is 500 and the number of turns is 200. Determine the current required to set up a flux of 0.001 weber. a. 7.54 A b. 7.96 A c. 8.19 A d. 8.47 Aarrow_forwardQ9 / What are the function of brushes , pole and commutator in DC machinearrow_forward
- 2. A C-core with a gap of 0.0001m has a coil number of 100 and a current of 10mA. First find the reluctance of the core given that the Iron core has a negligible reluctance and only the air reluctance contributes to the majority of reluctance. The core has a cross sectional area of 2cm². Next find the flux flowing thru the C-core.arrow_forward11. There is 900 mA of current through a wire with 40 turns. What is the reluctance of the circuit if the flux is 400Wb? 14,400 At/Wb B 1,440 At/Wb Ⓒ9,000 At/Wb O90,000 At/Wb Answer: Option O Explanation: No answer description is available. Let's discuss.arrow_forwardA magnetic circuit with a cross-sectional area of 20 cm? is to be operated at 50 Hz from a 120 V rms supply. The number of turns required to achieve a peak magnetic flux density of 1.8 T in the core isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
How does an Alternator Work ?; Author: Lesics;https://www.youtube.com/watch?v=tiKH48EMgKE;License: Standard Youtube License