Electric machinery fundamentals
5th Edition
ISBN: 9780073529547
Author: Chapman, Stephen J.
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 1.13Q
What conditions are necessary for a magnetic field to produce a voltage in a wire?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the concept of the magnetic circuit? Give examples of DC analysis of magnetic circuits
Answer from the choices
Explain the different types of magnetic materials
Chapter 1 Solutions
Electric machinery fundamentals
Ch. 1 - What is torque? What role does torque play in the...Ch. 1 - What is Amperes law?Ch. 1 - What is magnetizing intensity? What is magnetic...Ch. 1 - How does the magnetic circuit concept aid in the...Ch. 1 - What is reluctance?Ch. 1 - What is a ferromagnetic material? Why is the...Ch. 1 - How does the relative permeability of a...Ch. 1 - Prob. 1.8QCh. 1 - What are eddy current losses? What can be done to...Ch. 1 - Why are all cores exposed to ac flux variations...
Ch. 1 - What is Faraday law?Ch. 1 - What conditions are necessary for a magnetic field...Ch. 1 - What conditions are necessary for a magnetic field...Ch. 1 - Prob. 1.14QCh. 1 - The linear machine in Figure 1-19 is running at...Ch. 1 - Just how does a decrease in flux produce an...Ch. 1 - Will current be leading or lagging voltage in an...Ch. 1 - What are real, reactive, and apparent power? What...Ch. 1 - What is power factor?Ch. 1 - Prob. 1.1PCh. 1 - A flywheel with a moment of inertia of 4kgm2 is...Ch. 1 - A force of 10 N is applied to a cylinder of radius...Ch. 1 - A motor is supplying 50Nm of torque to its load....Ch. 1 - A ferromagnetic core is shown in Figure P1-2. The...Ch. 1 - A ferromagnetic core with a relative permeability...Ch. 1 - A two-legged core is shown in Figure P1-4. The...Ch. 1 - A core with three legs is shown in Figure P1-5....Ch. 1 - A two-legged core is shown in Figure P1-4. The...Ch. 1 - A wire is shown in Figure P1-7 that is moving in...Ch. 1 - Repeat Problem 1-10 for the wire in Figure P1-8.Ch. 1 - Prob. 1.12PCh. 1 - A core with three legs is shown in Figure P1-10....Ch. 1 - A two-legged magnetic core with an air gap is...Ch. 1 - A transformer core with an effective mean path...Ch. 1 - The core shown in Figure P1-2 has the flux shown...Ch. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Demonstrate that Equation (1-59) can be derived...Ch. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - For the linear machine of Problem 1-22: When this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is Ohm's Law of magnetic circuit? Derive relation between electric and magnetic circuit.arrow_forwardTrue or False: If the core material has a high reluctance, flux will flow freely in a magnetic circuit with a conductor with a high applied voltage.arrow_forward1. A type material that is not affected by magnetic field. 2. If the number of turns is doubled, what will happen to the inductance? 3. It provides magnetic pressure which sets up or tends to setup flux in a magnetic.arrow_forward
- A magnetic ring has a mean circumference of 20 cm and a cross section of 20 cm² and has 800 numbers of turns of wire. When the exciting current is 5 A, the flux is 2mWb. The relative permeability of iron is nearly?arrow_forwardThe length of a magnetic circuit in a moving iron instrument is 300mm.The coil around the soft iron core has 360 turns and takes a current of 1.75A.The core is square in section with sides of 20mm.Take the relative permeability of soft iron as 1100. Determine the magnetomotive force in the core. Determine the field strength. Determine the flux density. Determine the total flux.arrow_forwardExplain the Hysterisis loop in a magnetic circuit in detail.arrow_forward
- An iron circuit with a small 0.75 mm air gap is shown in Figure 1. A 6000 turn coil carries a current I = 18 mA which sets up a flux within the iron and across the air gap. The cross section of the iron is a consistent 0.8 cm?, and the mean length of the flux path is 0.15 m. a) Redraw the magnetic circuit using schematic symbols of an electric circuit with reluctance in each part of the circuit. b) State's Ohm's Law for magnetic circuit. c) By neglecting the effect of fringing, calculate the reluctance of the circuit. d) Find the flux within the core. N = 6000 Iron circuit (4, = 800 for iron). Figure 1arrow_forwardRequired mathematical expression of the relationship between magnetic flux density and magnetic field strength and Explain by drawing figures.arrow_forwardExplain the hysteresis that can be found in materials due to force, magnetic and electrical subjection (give an example on two different materials) high carbon stainless steel.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY