You are using a thin layer of epoxy to bond a Silicon chip to a pure aluminum plate that acts as a heat sink (epoxy layer 0.0200mm). The Silicon chip (k = 149.0 W/(m-K) is 0.200 mm thick, and has dimensions of 25.0mm by 25.0mm. The pure aluminum plate is 0.850cm thick, and has the same dimensions as the Silicon chip. The hot side of the silicon chip is measured to be 62.0°C; the cold side of the pure aluminum plate is measured to be 31.0°C. Assuming steady-state conduction (with the thin layer of epoxy acting as contact resistance, see Table 3.2.) determine the heat transfer rate through the chip. Do not add in an addition resistance due to the thickness of the epoxy layer, this has been incorporated into the contact resistance.
You are using a thin layer of epoxy to bond a Silicon chip to a pure aluminum plate that acts as a heat sink (epoxy layer 0.0200mm). The Silicon chip (k = 149.0 W/(m-K) is 0.200 mm thick, and has dimensions of 25.0mm by 25.0mm. The pure aluminum plate is 0.850cm thick, and has the same dimensions as the Silicon chip. The hot side of the silicon chip is measured to be 62.0°C; the cold side of the pure aluminum plate is measured to be 31.0°C. Assuming steady-state
Step by step
Solved in 2 steps with 1 images