You are to solve this problem using only the tools of dimensional analysis. You are not expected to know anything about gravitation. Do not use any equations about gravity! They won't help you, anyway. Use only dimensional analysis. This problem involves estimation, but do not guess. Neatly work out your solution using dimensional analysis. You will be asked to upload your work in the next problem. Newton's Law of Gravitation tells us that any two objects attract each other by pulling each other with a gravitational force. In principle, any two objects far out in space (far from other objects) should attract each other and come together using only their gravitational attraction, but how long would this take? Newton's gravitational constant is G = 6.67 × 10-11 (m²)/(s² kg) That says G = 6.67 x 10°*1 (m²)/(s² kg) (Notice that the denominator is "seconds squared" times "kg") Imagine two astronauts far out in space, very far from other objects (the picture above shows the Earth in the background but we have to imagine these two astronauts as being very far from planets). The mass of a typical astronaut in a space suit is roughly 150 kg. Imagine we start with two objects with masses of 150 kg and we place them 250 meters apart (twice the width of the International Space Station). Assume the two objects start from rest and the only forces on them are the gravitational forces they exert on each other. Using only the tools of dimensional analysis, estimate roughly how long it would take these two objects to ome together. O About one year. O About 1000 years. O About one month. O About 20 years. O About 4 hours. O Three or four days. O About 100 years.
You are to solve this problem using only the tools of dimensional analysis. You are not expected to know anything about gravitation. Do not use any equations about gravity! They won't help you, anyway. Use only dimensional analysis. This problem involves estimation, but do not guess. Neatly work out your solution using dimensional analysis. You will be asked to upload your work in the next problem. Newton's Law of Gravitation tells us that any two objects attract each other by pulling each other with a gravitational force. In principle, any two objects far out in space (far from other objects) should attract each other and come together using only their gravitational attraction, but how long would this take? Newton's gravitational constant is G = 6.67 × 10-11 (m²)/(s² kg) That says G = 6.67 x 10°*1 (m²)/(s² kg) (Notice that the denominator is "seconds squared" times "kg") Imagine two astronauts far out in space, very far from other objects (the picture above shows the Earth in the background but we have to imagine these two astronauts as being very far from planets). The mass of a typical astronaut in a space suit is roughly 150 kg. Imagine we start with two objects with masses of 150 kg and we place them 250 meters apart (twice the width of the International Space Station). Assume the two objects start from rest and the only forces on them are the gravitational forces they exert on each other. Using only the tools of dimensional analysis, estimate roughly how long it would take these two objects to ome together. O About one year. O About 1000 years. O About one month. O About 20 years. O About 4 hours. O Three or four days. O About 100 years.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON