A huge cannon is assembled on an almost airless planet. The planet has a radius of 5 x 10^6 m and a mass of 2.6 x 10^24 kg. The cannon fires a 10 cm radius sphere straight up at 5000 m/s. a) Assuming the planet is completely airless you should calculate what maximum height above the surface the sphere reaches. b) An observation satellite orbits the planet at a height of 1000 km. Does the projectile reach this height? If so what speed does it have as it goes past the satellite? c) Drag on this planet is actually D=0.005 A v2 (a measly 1% of drag on Earth) for the first 100 m ( and zero after that). Estimate or determine how much energy is lost due to this effect? Verbally comment on why it's an estimate.

icon
Related questions
Question

A huge cannon is assembled on an almost airless planet. The planet has a radius of 5 x 10^6 m and a mass of 2.6 x 10^24 kg. The cannon fires a 10 cm radius sphere straight up at 5000 m/s.

a) Assuming the planet is completely airless you should calculate what maximum height above the surface the sphere reaches.

b) An observation satellite orbits the planet at a height of 1000 km. Does the projectile reach this height? If so what speed does it have as it goes past the satellite?

c) Drag on this planet is actually D=0.005 A v2 (a measly 1% of drag on Earth) for the first 100 m ( and zero after that). Estimate or determine how much energy is lost due to this effect? Verbally comment on why it's an estimate.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer