a) Compare the average kinetic energy K,TRT of air molecules to the difference in gravitational energies, AU = mgz, at the top and bottom of a room, of height z = 3 m. Again, you can assume air is made of nitrogen only. Why doesn't the air in the room fall to the floor? What could you do to make it fall? b) This time calculate it for a 50 µm dirt particle of mass 1.25×10-10 kg. Does it fall to the ground and if so, why?

University Physics Volume 3
17th Edition
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:William Moebs, Jeff Sanny
Chapter5: Relativity
Section: Chapter Questions
Problem 19CQ: The mass of the fuel in a nuclear reactor decreases by an observable amount as it puts out energy....
icon
Related questions
Question
a) Compare the average kinetic energy K;TRT of air molecules to the difference
in gravitational energies, AU = mgz, at the top and bottom of a room, of height
z = 3 m. Again, you can assume air is made of nitrogen only. Why doesn't the air
in the room fall to the floor? What could you do to make it fall? b) This time
calculate it for a 50 µm dirt particle of mass 1.25×10-10 kg. Does it fall to the
ground and if so, why?
Transcribed Image Text:a) Compare the average kinetic energy K;TRT of air molecules to the difference in gravitational energies, AU = mgz, at the top and bottom of a room, of height z = 3 m. Again, you can assume air is made of nitrogen only. Why doesn't the air in the room fall to the floor? What could you do to make it fall? b) This time calculate it for a 50 µm dirt particle of mass 1.25×10-10 kg. Does it fall to the ground and if so, why?
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Relativistic Energy and momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University