Yk μ = 8 di = = Bi - = (αβ) Specify the appropriate linear model and define each component in the context with the problem. Yijk = μ + a₁ + B₁ + (aß) +&i=1,2; j = 1,2; k=1,2,3,4 & ijk = =

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
A virologist is interested in studying the effects of 2 preselected different culture media and 2 preselected different times on the growth of a particular virus. She performs a balanced design with 6 plates for each of the treatment combinations. The 24 measurements were taken in a completely randomized order.
Medium Time
12
1
2
18
12
18
27.5
38.0
27.2
29.3
data: Medium 1 & Time 12
Shapiro-Wilk normality test
W = 0.93239,
p-value = 0.5987
data: Medium 2 & Time 12
Shapiro-Wilk normality test
W = 0.86098
p-value 0.2318
Levene's Test for Homogeneity
29.7
37.6
27.1
30.6
Treatment Combination
Residuals
signif. codes: 0 ***** 0.001 **** 0.01
15.4
group 3 5.474 0.006521 **
40.0
data: Medium 1 & Time 18
Shapiro-Wilk normality test
W = 0.91981,
p-value 0.504
26.8
31.6
data: Medium 2 & Time 18.
Shapiro-Wilk normality test
W- 0.96619
p-value 0.8503
of Variance (center = "mean")
Df F value Pr (>F)
Data
> summary(aov(wk8_data$Data-wk8_data$Medium*wk8_datasTime))
Df Sum Sq Mean Sq F value Pr(>F)
wk8_data$Medium
1 3.8
0.531
wk8_data$Time
1 633.5
wk8_data$Medium: wk8_data$Time 1 233.8
Residuals
20 185.3
Signif. codes: 0 **** 0.001*** 0.01 * 0.05.¹0.1
Analysis of Variance
Df Sum Sq Mean Sq F value Pr (>F)
3 871.0 290.32
20 185.3
9.26
Kruskal-Wallis Rank Sum Test
3.8 0.406
633.5 68.385 6.96e-08 ***
233.8 25.235 6.51e-05 ***
9.3
1
31.34 9.35e-08 ***
0.05 0.11
data: wk8_data Data by Treatment Combinations
Kruskal-Wallis chi-squared = 19.007, df = 3, p-value = 0.0002725
21.
0
37.
3
28.
6
32.
8
Medium
1
1
1
1
1
1
1
1
1
1
1
1
722NNN
2
22222
20.
8
40.
9
31.
1
32.
5
Time
12
∞∞∞∞ ∞ ∞NNNNNN ∞ ∞ ∞ ∞ ∞ ∞ NNNNNN
12
12
12
12
12
18
18
18
18
18
18
12
12
12
12
12
12
18
18
18
18
18
18
19.1
38.8
25.4
Data
33.6
27.5
29.7
15.4
21
20.8
19.1
38
37.6
40
37.3
40.9
38.8
27.2
27.1
26.8
28.6
31.1
25.4
29.3
30.6
31.6
32.8
32.5
33.6
Transcribed Image Text:Medium Time 12 1 2 18 12 18 27.5 38.0 27.2 29.3 data: Medium 1 & Time 12 Shapiro-Wilk normality test W = 0.93239, p-value = 0.5987 data: Medium 2 & Time 12 Shapiro-Wilk normality test W = 0.86098 p-value 0.2318 Levene's Test for Homogeneity 29.7 37.6 27.1 30.6 Treatment Combination Residuals signif. codes: 0 ***** 0.001 **** 0.01 15.4 group 3 5.474 0.006521 ** 40.0 data: Medium 1 & Time 18 Shapiro-Wilk normality test W = 0.91981, p-value 0.504 26.8 31.6 data: Medium 2 & Time 18. Shapiro-Wilk normality test W- 0.96619 p-value 0.8503 of Variance (center = "mean") Df F value Pr (>F) Data > summary(aov(wk8_data$Data-wk8_data$Medium*wk8_datasTime)) Df Sum Sq Mean Sq F value Pr(>F) wk8_data$Medium 1 3.8 0.531 wk8_data$Time 1 633.5 wk8_data$Medium: wk8_data$Time 1 233.8 Residuals 20 185.3 Signif. codes: 0 **** 0.001*** 0.01 * 0.05.¹0.1 Analysis of Variance Df Sum Sq Mean Sq F value Pr (>F) 3 871.0 290.32 20 185.3 9.26 Kruskal-Wallis Rank Sum Test 3.8 0.406 633.5 68.385 6.96e-08 *** 233.8 25.235 6.51e-05 *** 9.3 1 31.34 9.35e-08 *** 0.05 0.11 data: wk8_data Data by Treatment Combinations Kruskal-Wallis chi-squared = 19.007, df = 3, p-value = 0.0002725 21. 0 37. 3 28. 6 32. 8 Medium 1 1 1 1 1 1 1 1 1 1 1 1 722NNN 2 22222 20. 8 40. 9 31. 1 32. 5 Time 12 ∞∞∞∞ ∞ ∞NNNNNN ∞ ∞ ∞ ∞ ∞ ∞ NNNNNN 12 12 12 12 12 18 18 18 18 18 18 12 12 12 12 12 12 18 18 18 18 18 18 19.1 38.8 25.4 Data 33.6 27.5 29.7 15.4 21 20.8 19.1 38 37.6 40 37.3 40.9 38.8 27.2 27.1 26.8 28.6 31.1 25.4 29.3 30.6 31.6 32.8 32.5 33.6
Yijk =
μ
=
di =
=
Specify the appropriate linear model and define each component in the
context with the problem.
Bi =
(aß),
Sijk
=
Yijik = μ + a₁ + B₁ + (aß) +&i=1,2; j = 1,2; k = 1,2,3,4
j
17
Transcribed Image Text:Yijk = μ = di = = Specify the appropriate linear model and define each component in the context with the problem. Bi = (aß), Sijk = Yijik = μ + a₁ + B₁ + (aß) +&i=1,2; j = 1,2; k = 1,2,3,4 j 17
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman