When the nucleus of uranium-235 (92 protons and 143 neutrons) absorbs an additional neutron, it undergoes a process called nuclear fission in which it breaks into two smaller nuclei. One possible fission is for uranium nucleus to divide into two palladium nuclei, each of which has 46 protons and 5.9 x 10−15 m in radius. The palladium nuclei then fly apart (their separation if essentially infinite) due to their electric repulsion. If (immediately after the fission) we assume that the palladium nuclei are at rest and are just touching each other, what is their combined kinetic energy when they are very far apart? [Hint: Use the conservation of mechanical energy equation.]
When the nucleus of uranium-235 (92 protons and 143 neutrons) absorbs an additional neutron, it undergoes a process called nuclear fission in which it breaks into two smaller nuclei. One possible fission is for uranium nucleus to divide into two palladium nuclei, each of which has 46 protons and 5.9 x 10−15 m in radius. The palladium nuclei then fly apart (their separation if essentially infinite) due to their electric repulsion. If (immediately after the fission) we assume that the palladium nuclei are at rest and are just touching each other, what is their combined kinetic energy when they are very far apart? [Hint: Use the conservation of mechanical energy equation.]
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images