A small ball with charge q = 12.8 μC and mass m = 0.065 kg is suspended from the ceiling by a string of length L = 2 m and is initially at rest. A uniform horizontal electric field E of magnitude 500 V/m is applied to the ball-string system. The ball then begins to move. Ignore air resistance. a)Suppose point B is the highest point the ball can reach. Take θ as the angle of the string with the vertical direction at point B. Enter an expression for the change of gravitational potential energy ΔUg from point A to point B in terms of the symbols given. b) Enter an expression for the change of the electrical potential energy ΔUe from point A to point B in terms of the symbols given.
A small ball with charge q = 12.8 μC and mass m = 0.065 kg is suspended from the ceiling by a string of length L = 2 m and is initially at rest. A uniform horizontal electric field E of magnitude 500 V/m is applied to the ball-string system. The ball then begins to move. Ignore air resistance.
a)Suppose point B is the highest point the ball can reach. Take θ as the angle of the string with the vertical direction at point B. Enter an expression for the change of gravitational potential energy ΔUg from point A to point B in terms of the symbols given.
b) Enter an expression for the change of the electrical potential energy ΔUe from point A to point B in terms of the symbols given.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images