In figure 2, an upwardly oriented uniform electric field E⃗ of a magnitude of 2.0 × 103 N / C has been established between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have a length L = 10.0 cm, and they are at a distance of d = 2.0 cm. An electron is sent between the plates from the left end of the lower plate. The initial velocity ⃗v0 of the electron forms an angle θ = 45◦ with the lower plate, and its magnitude is 6.0 × 106 m / s (a) Will the electron touch one of the plates? (b) If so, determine which one. Then find how far horizontally from the left end the electron will strike.
In figure 2, an upwardly oriented uniform electric field E⃗ of a magnitude of 2.0 × 103 N / C has been established between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have a length L = 10.0 cm, and they are at a distance of d = 2.0 cm. An electron is sent between the plates from the left end of the lower plate. The initial velocity ⃗v0 of the electron forms an angle θ = 45◦ with the lower plate, and its magnitude is 6.0 × 106 m / s (a) Will the electron touch one of the plates? (b) If so, determine which one. Then find how far horizontally from the left end the electron will strike.
Related questions
Question
In figure 2, an upwardly oriented uniform electric field E⃗ of a magnitude of 2.0 × 103 N / C has been established between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have a length L = 10.0 cm, and they are at a distance of d = 2.0 cm. An electron is sent between the plates from the left end of the lower plate. The initial velocity ⃗v0 of the electron forms an angle θ = 45◦ with the lower plate, and its magnitude is 6.0 × 106 m / s (a) Will the electron touch one of the plates? (b) If so, determine which one. Then find how far horizontally from the left end the electron will strike.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps