When a nucleus decays, the daughter nucleus can be in an excited state. The 93/43Tc nucleus (molar mass 92.910 2 g/mol) in the ground state decays by electron capture and e+ emission to energy levels of the daughter (molar mass 92.906 8 g/mol in the ground state) at 2.44 MeV, 2.03 MeV, 1.48 MeV, and 1.35 MeV. (a) Identify the daughter nuclide. (b) To which of the listed levels of the daughter are electron capture and e+ decay of 93/43Tc allowed?
When a nucleus decays, the daughter nucleus can be in an excited state. The 93/43Tc nucleus (molar mass 92.910 2 g/mol) in the ground state decays by electron capture and e+ emission to energy levels of the daughter (molar mass 92.906 8 g/mol in the ground state) at 2.44 MeV, 2.03 MeV, 1.48 MeV, and 1.35 MeV. (a) Identify the daughter nuclide. (b) To which of the listed levels of the daughter are electron capture and e+ decay of 93/43Tc allowed?
Related questions
Question
When a nucleus decays, the daughter nucleus can be in an excited state. The 93/43Tc nucleus (molar mass 92.910 2 g/mol) in the ground state decays by electron capture and e+ emission to energy levels of the daughter (molar mass 92.906 8 g/mol in the ground state) at 2.44 MeV, 2.03 MeV, 1.48 MeV, and 1.35 MeV. (a) Identify the daughter nuclide. (b) To which of the listed levels of the daughter are electron capture and e+ decay of 93/43Tc allowed?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps