An archaeologist finds some ancient jewelry made from bone. The jewelry has a carbon mass of 146 g (HINT: Assume all the carbon is 12C and determine the number of atoms, 12C has a molar mass of 12 g/mol) and careful measurements show that the remaining 14C has a current decay rate of 26 decays/s. Determine the age of the bone (and presumably the jewelry). The ratio of 14C to 12C when the animal died was 1.25×10-12 & the half-life of 14C is 5730 y. Additionally, 1 mol = 6.022×1023 particles, 1 y = 365.25 days, & 1 day = 24 h. age of bone =
Nuclear Fission
Nuclear fission is a type of nuclear reaction in which heavier nuclei split into lighter nuclei by releasing a large quantity of energy. The elements like uranium-235 and plutonium-239 isotope undergo nuclear fission releasing energy. When nuclei undergo fission, some quantity of mass is lost. The lost mass is converted to nuclear energy. Nuclear fission reaction is used in nuclear power plants and atomic bombs. In nuclear power plants, nuclear reactors are used to generate electricity.
Endothermic Nuclear Reaction
A nuclear reaction can be described as a process where two atoms, or two nuclei or nucleus and subatomic particles such as a proton, neutron interact together, and a large amount of energy is produced and new elements are also produced.
An archaeologist finds some ancient jewelry made from bone. The jewelry has a carbon mass of 146 g (HINT: Assume all the carbon is 12C and determine the number of atoms, 12C has a molar mass of 12 g/mol) and careful measurements show that the remaining 14C has a current decay rate of 26 decays/s. Determine the age of the bone (and presumably the jewelry). The ratio of 14C to 12C when the animal died was 1.25×10-12 & the half-life of 14C is 5730 y. Additionally, 1 mol = 6.022×1023 particles, 1 y = 365.25 days, & 1 day = 24 h.
age of bone =
Step by step
Solved in 3 steps