We can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top of the tree exerts a horizontal force, and thus a torque that can topple the tree if there is no opposing torque. Suppose a tree’s canopy presents an area of 9.0 m2 to the wind centered at a height of 7.0 m above the ground. (These are reasonable values for forest trees.) If the wind blows at 6.5 m/s: a. What is the magnitude of the drag force of the wind on the canopy? Assume a drag coefficient of 0.50.b. What torque does this force exert on the tree, measured about the point where the trunk meets the ground?
Rotational Equilibrium And Rotational Dynamics
In physics, the state of balance between the forces and the dynamics of motion is called the equilibrium state. The balance between various forces acting on a system in a rotational motion is called rotational equilibrium or rotational dynamics.
Equilibrium of Forces
The tension created on one body during push or pull is known as force.
We can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top of the tree exerts a horizontal force, and thus a torque that can topple the tree if there is no opposing torque. Suppose a tree’s canopy presents an area of 9.0 m2 to the wind centered at a height of 7.0 m above the ground. (These are reasonable values for forest trees.) If the wind blows at 6.5 m/s:
a. What is the magnitude of the drag force of the wind on the canopy? Assume a drag coefficient of 0.50.
b. What torque does this force exert on the tree, measured about the point where the trunk meets the ground?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images