A 45.5‑kg box with the dimensions a×b (the width a = 0.6 m and height b = 1.3 m) is standing on a rough horizontal floor (μs = 1.3). A Professor wants to tip the box over, she pushes on the right side of the box with a horizontal force F = 140 N at a distance h = 1.04 m above the floor as shown in the picture below. The other forces acting on the box are the gravity force (applied to the CoM of the box), the static friction force Fs and the normal force N (both applied to the lower right corner of the box, point Q). Calculate the magnitude and direction of the torques produced by the forces acting on the box relative to the lower right corner (point Q). Assume uniform mass distribution. 1. The torque due to the external force, τQ(due to F) = 2. The torque due to the weight of the box, τQ(due to mg) = 3. The torque due to the friction force, τQ(due to Fs) =
A 45.5‑kg box with the dimensions a×b (the width a = 0.6 m and height b = 1.3 m) is standing on a rough horizontal floor (μs = 1.3). A Professor wants to tip the box over, she pushes on the right side of the box with a horizontal force F = 140 N at a distance h = 1.04 m above the floor as shown in the picture below. The other forces acting on the box are the gravity force (applied to the CoM of the box), the static friction force Fs and the normal force N (both applied to the lower right corner of the box, point Q).
Calculate the magnitude and direction of the torques produced by the forces acting on the box relative to the lower right corner (point Q). Assume uniform mass distribution.
1. The torque due to the external force, τQ(due to F) =
2. The torque due to the weight of the box, τQ(due to mg) =
3. The torque due to the friction force, τQ(due to Fs) =
4. The torque due to the normal force, τQ(due to N) =


Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 8 images
