Water is pumped at 1.4 m/s from a tank at a treatment plant to a tank at a local works through two parallel pipes, 0.3 m and 0.6 m diameter respectively. What is the velocity in each pipe and, if a single pipe is used, what diameter will be needed if this flow of water is to be transported, the pressure drop being the same? Assume turbulent flow with the friction factor inversely proportional to the one quarter power of the Reynolds number. Ans.uj = 2.62 m/s, u; = 4.30 m/s, and d 0.63 m %3D

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
P.4.9
Water is pumped at 1.4 m/s from a tank at a treatment plant to a tank at a local
works through two parallel pipes, 0.3 m and 0.6 m diameter respectively. What is the
velocity in each pipe and, if a single pipe is used, what diameter will be needed if this
flow of water is to be transported, the pressure drop being the same? Assume turbulent
flow with the friction factor inversely proportional to the one quarter power of the
Reynolds number.
Ans.u = 2.62 m/s, u; = 4.30 m/s, and d 0.63 m
Transcribed Image Text:P.4.9 Water is pumped at 1.4 m/s from a tank at a treatment plant to a tank at a local works through two parallel pipes, 0.3 m and 0.6 m diameter respectively. What is the velocity in each pipe and, if a single pipe is used, what diameter will be needed if this flow of water is to be transported, the pressure drop being the same? Assume turbulent flow with the friction factor inversely proportional to the one quarter power of the Reynolds number. Ans.u = 2.62 m/s, u; = 4.30 m/s, and d 0.63 m
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Law of conservation of energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The