Use your acceleration vs. time graphs to sketch instantaneous velocity vs. time graphs for a light and heavy ball using the same scale for the time axes. Write down an equation for each graph. If there are constants in your equations, what kinematic quantities do they represent? How would you determine these constants from your graph? Can any of the constants be determined from the equations representing the acceleration vs. time graphs? Use your velocity vs. time graphs to sketch instantaneous position vs. time graphs for each case using the same scale for the time axes. Write down an equation for each graph. If there are constants in your equations, what kinematic quantities do they represent? How would you determine these constants from your graph? Can any of these constants be determined from the equations representing the acceleration vs. time or velocity vs. time graphs?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
- Sketch a graph of instantaneous acceleration vs. time for a falling ball. Next to this graph sketch a graph of instantaneous acceleration vs. time for a heavier falling ball that has the same size and shape. Explain your reasoning for each graph. Write down an equation for each graph. If there are constants in your equation, what
kinematic quantities do they represent? How would you determine these constants from your graph? - Use your acceleration vs. time graphs to sketch instantaneous velocity vs. time graphs for a light and heavy ball using the same scale for the time axes. Write down an equation for each graph. If there are constants in your equations, what kinematic quantities do they represent? How would you determine these constants from your graph? Can any of the constants be determined from the equations representing the acceleration vs. time graphs?
- Use your velocity vs. time graphs to sketch instantaneous position vs. time graphs for each case using the same scale for the time axes. Write down an equation for each graph. If there are constants in your equations, what kinematic quantities do they represent? How would you determine these constants from your graph? Can any of these constants be determined from the equations representing the acceleration vs. time or velocity vs. time graphs?
*SOLVE 2 and 3*
Trending now
This is a popular solution!
Step by step
Solved in 10 steps with 14 images