Two firms produce goods that are imperfect substitutes. If firm 1 charges price p1 and firm 2 charges price p2, then their respective demands are q1 = 12 - 2p1 + p2 and q2 = 12 + p1 - 2p2 So this is like Bertrand competition, except that when p1 > p2, firm 1 still gets a positive demand for its product. Regulation does not allow either firm to charge a price higher than 20. Both firms have a constant marginal cost c = 4. (a) Construct the best reply function BR1(p2) for firm 1. That is, p1 = BR1(p2) is the optimal price for firm 1 if it is known that firm 2 charges a price p2. Construct a Nash equilibrium in pure strategies for this game. Are there any Nash equilibria in mixed strategies? If yes, construct one; if no provide a justification. (b) Notice that for any given price p1, firm 1’s demand increases with p2, so firm 1 is better off when firm 2 charges a high price p2. What is the best reply to p2 = 20? What is the best reply to p2 = 0 (c) What prices for firm 1 are not strictly dominated? What prices would survive two rounds of strict dominance? Provide a reason for each strategy that you eliminate. (d) Challenge question: If you continue the iterative elimination of strictly dominated strategies, what strategies will survive?
Two firms produce goods that are imperfect substitutes. If firm 1 charges
q1 = 12 - 2p1 + p2 and q2 = 12 + p1 - 2p2
So this is like Bertrand competition, except that when p1 > p2, firm 1 still gets a positive
(a) Construct the best reply function BR1(p2) for firm 1. That is, p1 = BR1(p2) is the optimal price for firm 1 if it is known that firm 2 charges a price p2. Construct a Nash equilibrium in pure strategies for this game. Are there any Nash equilibria in mixed strategies? If yes, construct one; if no provide a justification.
(b) Notice that for any given price p1, firm 1’s demand increases with p2, so firm 1 is better off when firm 2 charges a high price p2. What is the best reply to p2 = 20? What is the best reply to p2 = 0
(c) What prices for firm 1 are not strictly dominated? What prices would survive two rounds of strict dominance? Provide a reason for each strategy that you eliminate.
(d) Challenge question: If you continue the iterative elimination of strictly dominated strategies, what strategies will survive?
![(1) Two firms produce goods that are imperfect substitutes. If firm 1 charges price pi and
firm 2 charges price p2, then their respective demands are
q1 = 12 – 2p1 + P2 and q2 = 12+p1 – 2p2.
So this is like Bertrand competition, except that when p1 > p2, firm 1 still gets a positive
demand for its product. Regulation does not allow either firm to charge a price higher
than 20. Both firms have a constant marginal cost c = 4.
(a) Construct the best reply function BR1(p2) for firm 1. That is, pi =
the optimal price for firm 1 if it is known that firm 2 charges a price p2. Construct a
Nash equilibrium in pure strategies for this game. Are there any Nash equilibria in mixed
strategies? If yes, construct one; if no provide a justification.
BR1(p2) is
(b) Notice that for any given price P1, firm l's demand increases with p2, so firm 1 is better
off when firm 2 charges a high price p2. What is the best reply to p2 = 20? What is the
best reply to p2 = 0?
(c) What prices for firm 1 are not strictly dominated? What prices would survive two
rounds of strict dominance? Provide a reason for each strategy that you eliminate.
(d) Challenge question: If you continue the iterative elimination of strictly dominated
strategies, what strategies will survive?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffe73e726-7914-4687-af3d-c913e1300b92%2Fda7327ff-d5e8-437c-99ac-26b8f906cbf9%2F1qir5xn_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![ENGR.ECONOMIC ANALYSIS](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9780190931919/9780190931919_smallCoverImage.gif)
![Principles of Economics (12th Edition)](https://www.bartleby.com/isbn_cover_images/9780134078779/9780134078779_smallCoverImage.gif)
![Engineering Economy (17th Edition)](https://www.bartleby.com/isbn_cover_images/9780134870069/9780134870069_smallCoverImage.gif)
![ENGR.ECONOMIC ANALYSIS](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9780190931919/9780190931919_smallCoverImage.gif)
![Principles of Economics (12th Edition)](https://www.bartleby.com/isbn_cover_images/9780134078779/9780134078779_smallCoverImage.gif)
![Engineering Economy (17th Edition)](https://www.bartleby.com/isbn_cover_images/9780134870069/9780134870069_smallCoverImage.gif)
![Principles of Economics (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305585126/9781305585126_smallCoverImage.gif)
![Managerial Economics: A Problem Solving Approach](https://www.bartleby.com/isbn_cover_images/9781337106665/9781337106665_smallCoverImage.gif)
![Managerial Economics & Business Strategy (Mcgraw-…](https://www.bartleby.com/isbn_cover_images/9781259290619/9781259290619_smallCoverImage.gif)