Truck A has two single axles. One axle weighs 12,000 Ib and the other weighs 23,000 lb. Truck B has an 8000-lb single axle and a 43,000-lb tandem axle. On a flexible pavement with a 3-inch hot-mix asphalt (HMA) wearing surface, a 6-inch soil-cement base, and an 8-inch crushed stone sub base, which truck will cause more pavement damage? (Assume drainage coefficient are 1.0.)
Show transcribed image text 1. Truck A has two single axles. One axle weighs 12,000 Ib and the other weighs 23,000 lb. Truck B has an 8000-lb single axle and a 43,000-lb tandem axle. On a flexible pavement with a 3-inch hot-mix asphalt (HMA) wearing surface, a 6-inch soil-cement base, and an 8-inch crushed stone sub base, which truck will cause more pavement damage? (Assume drainage coefficient are 1.0.) Hints: use linear interpolation if SN is not integer. 2. A highway has the following pavement design daily traffic: 300 single axles at 10,000 lb each, 120 single axles at 18,000 lb each, 100 single axles at 23,000 Ib each, 100 tandem axles at 32,000 lb each, 30 single axles at 32,000 lb each, and 100 triple axles at 40,000 lb each. A flexible pavement is designed to have 4 inches of sand-mix asphalt wearing surface, 6 inches of soil- cement base, and 7 inches of crushed stone sub base. The pavement has a 10-year design life, a reliability of 85%, an overall standard deviation of 0.30, drainage coefficients of 1.0, an initial PSI of 4.7, and a TSI of 2.5. Calculate the 18-kip ESAL of the traffic load for the 10- year period and the structure number of the pavement

Trending now
This is a popular solution!
Step by step
Solved in 5 steps









