Top 50 Metro Areas by Population: Personal Income, Population, Per Capita Personal Income Rank Metro GeoName Total Metro Personal Income 2020 (000s) Per Capita Personal Income 2020 Population 2020 (millions) # of NFL, NBA, MLB, NHL teams 1 New York-Newark-Jersey City, NY-NJ-PA 1574364671 82322 19.124359 9 2 Los Angeles-Long Beach-Anaheim, CA 915132543 69805 13.109903 6 3 Chicago-Naperville-Elgin, IL-IN-WI 636555184 67671 9.406638 5 4 Dallas-Fort Worth-Arlington, TX 473604117 61554 7.694138 4 5 Houston-The Woodlands-Sugar Land, TX 428500645 59893 7.154478 3 6 Washington-Arlington-Alexandria, DC-VA-MD-WV 485550913 76771 6.324629 4 7 Miami-Fort Lauderdale-Pompano Beach, FL 396247347 64190 6.173008
Top 50 Metro Areas by Population: Personal Income, Population, Per Capita Personal Income Rank Metro GeoName Total Metro Personal Income 2020 (000s) Per Capita Personal Income 2020 Population 2020 (millions) # of NFL, NBA, MLB, NHL teams 1 New York-Newark-Jersey City, NY-NJ-PA 1574364671 82322 19.124359 9 2 Los Angeles-Long Beach-Anaheim, CA 915132543 69805 13.109903 6 3 Chicago-Naperville-Elgin, IL-IN-WI 636555184 67671 9.406638 5 4 Dallas-Fort Worth-Arlington, TX 473604117 61554 7.694138 4 5 Houston-The Woodlands-Sugar Land, TX 428500645 59893 7.154478 3 6 Washington-Arlington-Alexandria, DC-VA-MD-WV 485550913 76771 6.324629 4 7 Miami-Fort Lauderdale-Pompano Beach, FL 396247347 64190 6.173008
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Top 50 Metro Areas by Population: Personal Income, Population, Per Capita Personal Income | |||||||
Rank | Metro GeoName | Total Metro Personal Income 2020 (000s) | Per Capita Personal Income 2020 | Population 2020 (millions) | # of NFL, NBA, MLB, NHL teams | ||
1 | New York-Newark-Jersey City, NY-NJ-PA | 1574364671 | 82322 | 19.124359 | 9 | ||
2 | Los Angeles-Long Beach-Anaheim, CA | 915132543 | 69805 | 13.109903 | 6 | ||
3 | Chicago-Naperville-Elgin, IL-IN-WI | 636555184 | 67671 | 9.406638 | 5 | ||
4 | Dallas-Fort Worth-Arlington, TX | 473604117 | 61554 | 7.694138 | 4 | ||
5 | Houston-The Woodlands-Sugar Land, TX | 428500645 | 59893 | 7.154478 | 3 | ||
6 | Washington-Arlington-Alexandria, DC-VA-MD-WV | 485550913 | 76771 | 6.324629 | 4 | ||
7 | Miami-Fort Lauderdale-Pompano Beach, FL | 396247347 | 64190 | 6.173008 | 4 | ||
8 | Philadelphia-Camden-Wilmington, PA-NJ-DE-MD | 425748748 | 69705 | 6.107906 | 4 | ||
9 | Atlanta-Sandy Springs-Alpharetta, GA | 357795984 | 58773 | 6.087762 | 3 | ||
10 | Phoenix-Mesa-Chandler, AZ | 262362901 | 51851 | 5.059909 | 4 | ||
11 | Boston-Cambridge-Newton, MA-NH | 418178210 | 85724 | 4.878211 | 4 | ||
12 | San Francisco-Oakland-Berkeley, CA | 521589857 | 111050 | 4.696902 | 4 | ||
13 | Riverside-San Bernardino-Ontario, CA | 212234205 | 45365 | 4.678371 | 0 | ||
14 | Detroit-Warren-Dearborn, MI | 251173430 | 58356 | 4.304136 | 4 | ||
15 | Seattle-Tacoma-Bellevue, WA | 323176255 | 80420 | 4.018598 | 3 | ||
16 | Minneapolis-St. Paul-Bloomington, MN-WI | 245833135 | 67214 | 3.657477 | 4 | ||
17 | San Diego-Chula Vista-Carlsbad, CA | 220825596 | 66266 | 3.332427 | 1 | ||
18 | Tampa-St. Petersburg-Clearwater, FL | 169629192 | 52291 | 3.243963 | 3 | ||
19 | Denver-Aurora-Lakewood, CO | 208852979 | 69822 | 2.991231 | 4 | ||
20 | St. Louis, MO-IL | 170697159 | 60844 | 2.805473 | 3 | ||
21 | Baltimore-Columbia-Towson, MD | 186759714 | 66695 | 2.800189 | 2 | ||
22 | Charlotte-Concord-Gastonia, NC-SC | 152149128 | 56682 | 2.684276 | 2 | ||
23 | Orlando-Kissimmee-Sanford, FL | 127277824 | 48223 | 2.639374 | 1 | ||
24 | San Antonio-New Braunfels, TX | 129592611 | 50022 | 2.590732 | 1 | ||
25 | Portland-Vancouver-Hillsboro, OR-WA | 157150249 | 62603 | 2.510259 | 1 | ||
26 | Sacramento-Roseville-Folsom, CA | 146881794 | 61852 | 2.374749 | 1 | ||
27 | Las Vegas-Henderson-Paradise, NV | 118678768 | 51244 | 2.315963 | 1 | ||
28 | Pittsburgh, PA | 147040883 | 63675 | 2.309246 | 3 | ||
29 | Austin-Round Rock-Georgetown, TX | 148993898 | 64913 | 2.295303 | 0 | ||
30 | Cincinnati, OH-KY-IN | 133097872 | 59607 | 2.232907 | 2 | ||
31 | Kansas City, MO-KS | 126169318 | 58057 | 2.173212 | 2 | ||
32 | Columbus, OH | 120320535 | 56252 | 2.138946 | 1 | ||
33 | Indianapolis-Carmel-Anderson, IN | 126361669 | 60431 | 2.091019 | 1 | ||
34 | Cleveland-Elyria, OH | 120269831 | 58846 | 2.043807 | 3 | ||
35 | San Jose-Sunnyvale-Santa Clara, CA | 239730405 | 121619 | 1.97116 | 0 | ||
36 | Nashville-Davidson--Murfreesboro--Franklin, TN | 121744536 | 62076 | 1.961232 | 2 | ||
37 | Virginia Beach-Norfolk-Newport News, VA-NC | 94883251 | 53310 | 1.779824 | 0 | ||
38 | Providence-Warwick, RI-MA | 98890061 | 60897 | 1.62389 | 0 | ||
39 | Jacksonville, FL | 87532441 | 55125 | 1.587892 | 1 | ||
40 | Milwaukee-Waukesha, WI | 95447587 | 60499 | 1.577676 | 2 | ||
41 | Oklahoma City, OK | 75099831 | 52688 | 1.425375 | 1 | ||
42 | Raleigh-Cary, NC | 86478668 | 60884 | 1.420376 | 1 | ||
43 | Memphis, TN-MS-AR | 68992049 | 51155 | 1.348678 | 1 | ||
44 | Richmond, VA | 79704113 | 61148 | 1.303469 | 0 | ||
45 | New Orleans-Metairie, LA | 73652443 | 57891 | 1.272258 | 2 | ||
46 | Louisville/Jefferson County, KY-IN | 70652096 | 55676 | 1.268993 | 0 | ||
47 | Salt Lake City, UT | 71932167 | 58008 | 1.240029 | 1 | ||
48 | Hartford-East Hartford-Middletown, CT | 80910874 | 67343 | 1.201483 | 0 | ||
49 | Buffalo-Cheektowaga, NY | 62784969 | 55777 | 1.125637 | 2 | ||
50 | Birmingham-Hoover, AL | 60136271 | 55074 | 1.091921 | 0 |
1) Estimate the standard deviation of the error term in the simple linear regression model.
1) Calculate SE (b1), the estimate of the standard deviation, of the least squares slope b1
1a) what is the value of the test statistic for testing H0: B1 = 0?
2) Calculate a 90% confidence interval for the slope of the least squares regression line of # of teams on Population size.
2a) For the metro areas that have at least 1 professional team, how much does their population have to increase to support another team?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman