Theorem 3.2.7 (Abel's Theorem)4 If y1 and y2 are solutions of the second-order linear differential equation (22) L[y]=y′′+p(t)y′+q(t)y=0 where p and q are continuous on an open interval I, then the Wronskian W[y1, y2](t) is given by (23) W[y1,y2](t)=cexp(−∫p(t)dt) where c is a certain constant that depends on y1 and y2, but not on t. Further, W[y1, y2](t) either is zero for all t in I (if c = 0) or else is never zero in I (if c ≠ 0).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Theorem 3.2.7 (Abel's Theorem)4

If y1 and y2 are solutions of the second-order linear differential equation

(22)
L[y]=y′′+p(t)y′+q(t)y=0

where p and q are continuous on an open interval I, then the Wronskian W[y1y2](t) is given by

(23)
W[y1,y2](t)=cexp(−∫p(t)dt)

where c is a certain constant that depends on y1 and y2, but not on t. Further, W[y1y2](t) either is zero for all t in I (if c = 0) or else is never zero in I (if c ≠ 0).

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,