√2 1. Verify that y₁(x) = e-x/³ COS x and y₂ (x): 3 = e-x/3 sin- x are solutions of the differential equation 3 3y" + 2y + y = 0 on (-∞, ∞) Compute the Wronskian W (y1, y2) and determine if {y₁, y₂} forms a fundamental set of solutions.
√2 1. Verify that y₁(x) = e-x/³ COS x and y₂ (x): 3 = e-x/3 sin- x are solutions of the differential equation 3 3y" + 2y + y = 0 on (-∞, ∞) Compute the Wronskian W (y1, y2) and determine if {y₁, y₂} forms a fundamental set of solutions.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please provide hand writting solution
![√2
1. Verify that y₁(x) = e¯x/³ cos- x and y₂ (x) = e-x/³ sin x are solutions of the differential equation
3
3
3y" + 2y' + y = 0 on (-∞, ∞)
Compute the Wronskian W (y1, y2) and determine if {y₁, y₂} forms a fundamental set of solutions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F85c891c8-45c6-4e44-9711-32029b30c591%2Fb3503b23-be55-4fa1-973f-8ad1d0a16f1a%2Fsj2ak9_processed.png&w=3840&q=75)
Transcribed Image Text:√2
1. Verify that y₁(x) = e¯x/³ cos- x and y₂ (x) = e-x/³ sin x are solutions of the differential equation
3
3
3y" + 2y' + y = 0 on (-∞, ∞)
Compute the Wronskian W (y1, y2) and determine if {y₁, y₂} forms a fundamental set of solutions.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)