The system acetonitrile (1)-water (2) forms an azeotrope at 1 atm pressure* at x T = 76.5°C. a. From the azeotropic point, calculate the van Laar parameters. == 0.695,

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
The system acetonitrile (1)–water (2) forms an azeotrope at 1 atm pressure' at x,
76.5°C.
0.695,
T =
a. From the azeotropic point, calculate the van Laar parameters.
b. Fit the data below to the van Laar equation for the best parameter set.
c. Fit the data for the best three-suffix Margules parameters.
d. Compare the predictions for y, and y, from the three sets of parameters to the actual data
point at x, = 0.1050, 80.7°C.
VLE for acetonitrile (1)-water (2) at 760 mmHg (1 atm):
T, °C
84.2
0.0540
0.4580
0.1050
0.6330
80.7
0.5540
0.6840
0.6970
77.2
76.8
0.7250
78.1
0.9030
0.8250
79.4
0.9640
0.9030
The Antoine constants for acetonitrile are:
A = 7.33986
B = 1482.290
C = 250.523
Assume an ideal vapor phase.
Note: The model predictions (in b and c, above) may not cover the whole date range.
Use your judgement.
Transcribed Image Text:The system acetonitrile (1)–water (2) forms an azeotrope at 1 atm pressure' at x, 76.5°C. 0.695, T = a. From the azeotropic point, calculate the van Laar parameters. b. Fit the data below to the van Laar equation for the best parameter set. c. Fit the data for the best three-suffix Margules parameters. d. Compare the predictions for y, and y, from the three sets of parameters to the actual data point at x, = 0.1050, 80.7°C. VLE for acetonitrile (1)-water (2) at 760 mmHg (1 atm): T, °C 84.2 0.0540 0.4580 0.1050 0.6330 80.7 0.5540 0.6840 0.6970 77.2 76.8 0.7250 78.1 0.9030 0.8250 79.4 0.9640 0.9030 The Antoine constants for acetonitrile are: A = 7.33986 B = 1482.290 C = 250.523 Assume an ideal vapor phase. Note: The model predictions (in b and c, above) may not cover the whole date range. Use your judgement.
Expert Solution
steps

Step by step

Solved in 3 steps with 9 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The