The raw feed to a sulfur removal process contains 15 wt% CO2, 5% H2S, and 1.5% CO, and the balance is CH4. The original absorber design placed a maximum flow rate limit of 80 kg/h. The product stream of the whole process contains 1% H2S, 0.3% CO, and the balance is carbon diox- ide and methane. Any feed flow rate in excess of 80 kg/h is bypassed. The absorber absorbs hydrogen sulfide and carbon monoxide only. If the fresh feed to the unit is 100 kg/h, perform a degrees of freedom analysis and find the flow rates of the product streams.
The raw feed to a sulfur removal process contains 15 wt% CO2, 5% H2S, and 1.5% CO, and the balance is CH4. The original absorber design placed a maximum flow rate limit of 80 kg/h. The product stream of the whole process contains 1% H2S, 0.3% CO, and the balance is carbon diox- ide and methane. Any feed flow rate in excess of 80 kg/h is bypassed. The absorber absorbs hydrogen sulfide and carbon monoxide only. If the fresh feed to the unit is 100 kg/h, perform a degrees of freedom analysis and find the flow rates of the product streams.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
The raw feed to a sulfur removal process contains 15 wt% CO2, 5% H2S,
and 1.5% CO, and the balance is CH4. The original absorber design
placed a maximum flow rate limit of 80 kg/h. The product stream of the
whole process contains 1% H2S, 0.3% CO, and the balance is carbon diox-
ide and methane. Any feed flow rate in excess of 80 kg/h is bypassed.
The absorber absorbs hydrogen sulfide and carbon monoxide only. If the
fresh feed to the unit is 100 kg/h, perform a degrees of freedom analysis
and find the flow rates of the product streams.

Transcribed Image Text:100 kg/h
CH4 0.785
CO₂ 0.15
H₂S 0.05
CO 0.015
3
回
m,?kg/h
CH,CO, | 5
H₂S, CO
m₁ = 80 kg/h
CH4
CO₂ 0.15
H₂S 0.05
CO 0.015
Absorber
4
m6?kg/h
CH₁
CO₂*00₂6
H₂S 0.01
CO 0.003
m?kg/h
→H₂S *H,SA
COCOA
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images

Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The