The quantities A and p (called the amplitude and the phase) are undetermined by the differential equation. They are determined by initial conditions -- specifically, the initial position and the initial velocity -- usually at t = 0, but sometimes at another time. In the oscillating part of the experiment, I measured only the time of 30 periods. I measured no position or velocity. Consequently, A and p (and also yo) are irrelevant in the problem. We only compare the period T or the frequency w with the theoretical prediction. You have (hopefully) derived (or maybe looked up) the relation between w and k and m. This final question relates w and T. If w = 5.8*10º rad/s, calculate T in seconds. (Remember, that a radian equals one.) T might be a fraction of a second.
The quantities A and p (called the amplitude and the phase) are undetermined by the differential equation. They are determined by initial conditions -- specifically, the initial position and the initial velocity -- usually at t = 0, but sometimes at another time. In the oscillating part of the experiment, I measured only the time of 30 periods. I measured no position or velocity. Consequently, A and p (and also yo) are irrelevant in the problem. We only compare the period T or the frequency w with the theoretical prediction. You have (hopefully) derived (or maybe looked up) the relation between w and k and m. This final question relates w and T. If w = 5.8*10º rad/s, calculate T in seconds. (Remember, that a radian equals one.) T might be a fraction of a second.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps