The liquid food is flowed through an uninsulated pipe at 90 ° C. The product flow rate is 0.3 kg / s and has a density of 1000 kg / m³, specific heat 4 kJ / (kg K), a viscosity of 8 x 10-6 Pa s, and a thermal conductivity of 0.55 W / (m) K). Assume that the change in viscosity is negligible. The internal diameter of the pipe is 30 mm with a thickness of 3 mm made of stainless steel (k = 15 W / [m ° C]). The outside temperature is 15 ° C. If the outer convective heat transfer coefficient is 18 W / (m² K), calculate the heat loss at steady state per meter pipe length. a. Find the convection coefficient in pipe = W / m² ° C. b. Calculate heat loss per meter pipe length =
The liquid food is flowed through an uninsulated pipe at 90 ° C. The product flow rate is 0.3 kg / s and has a density of 1000 kg / m³, specific heat 4 kJ / (kg K), a viscosity of 8 x 10-6 Pa s, and a thermal conductivity of 0.55 W / (m) K). Assume that the change in viscosity is negligible. The internal diameter of the pipe is 30 mm with a thickness of 3 mm made of stainless steel (k = 15 W / [m ° C]). The outside temperature is 15 ° C. If the outer convective heat transfer coefficient is 18 W / (m² K), calculate the heat loss at steady state per meter pipe length.
a. Find the convection coefficient in pipe =
W / m² ° C.
b. Calculate heat loss per meter pipe length = watts
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)