The exponential drop in the brightness of supernova 1987A was due to the decay of 56Ni (t1/2 = 6.1 days) → 56Co (t1/2 = 77.1 days) → 56Fe. If the energy were primarily due to the decay of 56Ni, what falloff in brightness by the end of 300 days would we expect? What if it were due to the energy in the decay of 56Co? The actual data showed a decrease in brightness by a factor of about 100 after 300 days
Q: Why does a type Ia supernova explode? in two sentences.
A:
Q: A planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the…
A: The rate of expansion, vkm/s=35.0 km/s The expansion radius, r=0.3 arc s The time duration,…
Q: Which of the following is least reasonable regarding novae and supernovae? Group of answer choices…
A:
Q: If an X-ray binary consists of a 17-solar-mass star and a neutron star orbiting each other every…
A: The expression for the Kepler’s third law is as follows: MA+MB=a3p2 1
Q: What is the answer for sub-item (b in the picture) if the radius of the neutron star is 94.881 km? (
A: Given data : Radius of sun , r = 94.881 Km = 94.881×103 m To find : Find average density of sun if…
Q: 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0l 0.5 10 Wavelength A in mm c) The left hand…
A: from the graph, the maximum intensity of radiation is at λ=1 mm. From Wein's law, we have…
Q: An AGN is emitting with a luminosity of 2×1040W. The AGN's brightness varies by 10% on a time scale…
A: GivenAn AGN is emitting with a luminosity of 2×1040W. The AGN's brightness varies by 10% on a time…
Q: Which of the following statements about Supernova 1987A is FALSE? a. it exploded relatively close…
A: Supernova is a cosmological event. When a star reaches to its end time of it's life, then it gets…
Q: If the accretion disk around a neutron star has a radius of 2 × 105 km, what is the orbital velocity…
A: Neutron stars are formed when massive stars collapse under their own gravity. They are very…
Q: 7. If a car was on the highway and was trying to pass another ar and went from a speed of 60 m/s to…
A: Given : vo = 60 m/s v = 75 m/s t = 3 seconds
Q: e la supernova?
A: To trigger a type la supernova one of the two stars must be a white dwarf . The other star is often…
Q: Calculate the total energy output per second in watts (W) of a star that converts 900 million tonnes…
A: To calculate the energy output per second in watts (W) of a star that converts 900 million tonnes of…
Q: Neutrinos are experimentally determined to have an extremely small mass. Huge numbers of neutrinos…
A: A neutrino may be a sub-atomic particle, which is emitted during the decay. It can uncharged…
Q: fill in missing word a) One difference between a type I and type II supernova is the formation of…
A: Few sentences are given and we need to fill in the blanks.
Q: Assume that the gravitational binding energy of a star of mass M and radius R is |Egr| ~ GM²/R. Use…
A:
Q: A visual binary is composed of two stars A and B. This visual binary has a rotation period of 59.94…
A:
Q: If the accretion disk around a neutron star has a radius of 8 ✕ 105 km, what is the orbital velocity…
A: Given Data: The radius of the neutron star is r = 8 x 105 km. As we know that the mass of the…
Q: a supernova remnant is now 2.95 pc in radius and is expanding at 3,850 km/s. approximately how many…
A: Given information: The radius of the supernova remnant (D) = 2.95 pc = 2.95 (3.1×1013 km) = 9.145…
Q: If the expanding layers of a supernova move at a constant velocity of v = 10, 000 %3D km/s and the…
A: Given: velocity of supernova v=104 km/s mass of the supernova M=2.4×1031 kg Ephoton=mc2 Time taken…
Q: 12.4 (a) What is the average density of the sun? (b) What is the av- erage density of a neutron star…
A: We know that the density of an object is defined as the mass divided by volume. It can be given by :…
Q: WR 68a is a relatively newly discovered (2015) double-lined spectroscopic binary. It has an orbital…
A: Solution: Calculate the orbital radius of each planet from the given time period and velocity.…
Q: 2. (a) Find the virial mass of a cluster for which the rms radial velocity dispersion is 5 km/s and…
A: Because of how clusters are prepared, they remain as tiny particles in the course of an experiment…
Q: Determining the orbit of the two stars of Kepler-34, also called A and B. These two stars together…
A: For a binary system, the period T is T=4π2a3Gm1+m2 Where a is the semi-major axis, m represents the…
Q: A G0 III star with a mass of about 1 M⊙ sits on the horizontal branch. Horizontal branch stars are…
A: Given information: The mass of the star (M) = 1 M⊙ The luminosity of the star (L) = 100 L⊙ The…
Q: 1. The neutrino flux from SN 1987A was estimated to be 1.3 x 1014 m-2 at the location of Earth. If…
A:
Q: If the accretion disk around a neutron star has a radius of 8 ✕ 105 km, what is the orbital velocity…
A:
Q: In a Type Ia supernova, the cause of the violent outburst is: 1) the sudden emission of a shell…
A: A supernova is the explosion of a star that happens during the final evolutionary stages of a…
Q: Convert the average mass density in gm/cm-3 of a M = 0.5 Msun R = 0.015 Rsun white dwarf to the…
A: Given that For white dwarf star given that M = 0.5 Msun R = 0.015 Rsun We know that mass of sun…
Q: What is the free-fall time of a 10 MSun main-sequence star? O 100 hours 10 hours O 1 hour O 0.1…
A: The problem is based upon free fall of a star. Here the given star is having the mass 10 times the…
Q: Consider an M-dwarf star of mass 0.1M⊙ and luminosity 10−3L⊙. When the star joins the main sequence…
A: Luminosity of the star is defined as the power emitted by the star. Power is simply the energy…
Q: Let's compare the acceleration due to gravity at the surface of a Sun-like star to a white dwarf of…
A:
Q: A Type la supernova is observed and achieves an apparent magnitude of m 19.89 at peak brightness.…
A: Given Apparent magnitude, m=19.89 Absolute magnitude, M=-19 We know, m-M=5log(d10) where d is the…
Q: Assuming that hydrogen fusion requires the Universe to have a temperature of T > 10’ K (as measured…
A:
Q: A 1.8 M neutron and a 0.7 M white dwarf have been found orbiting each other with a period of 28…
A: Kepler’s third law for binary stars
Q: A white dwarf in a binary system has a radius of 7000 km and a mass equal (minus an infinitesimal…
A: Step 1:Given:The mass of the white dwarf: m=1.4MsunThe initial radius of the star: R1=7000 kmThe…
Q: supernova remnant is now 4.75 pc in radius and is expanding at 1,600 km/s. Approximately how many…
A: Given 1 pc = 3.1 × 1013 km 1 year = 3.2 × 107 s Radius of supernova remnant = 4.75 × 3.1 × 10 13 km…
Q: What is the difference between type I and type II supernovae
A: To determine Difference between type I and type II supernovae
Q: A supernova remnant is now 3.05 pc in radius and is expanding at 1,100 km/s. Approximately how many…
A: Given, The radius: r=3.05 pc=3.05×3.1 × 1013 km 1 pc =3.1 × 1013 kmor, r=9.455 ×…
Q: In a star of 1 solar mass (M☉), the core hydrogen burning phase, also known as the main sequence…
A: In the field of stellar evolution, there is a principle that the lifetime of a star on the main…
The exponential drop in the brightness of supernova 1987A was due to the decay of 56Ni (t1/2 = 6.1 days) → 56Co (t1/2 = 77.1 days) → 56Fe. If the energy were primarily due to the decay of 56Ni, what falloff in brightness by the end of 300 days would we expect? What if it were due to the energy in the decay of 56Co? The actual data showed a decrease in brightness by a factor of about 100 after 300 days
Step by step
Solved in 5 steps
- The flux received at the Earth from Supernova 1885 was 3.0182 x 10 10 W/m². The luminosity of the supernova is 6 x 10° Lo (or 6 x 10° solar luminosities). What is the distance to the supernova in parsecs? Take 1 pc = 3.0857 x 1016 m and Lo= 3.828 x 1026 w. d = pc(a) Using Einstein's famous equation for rest-mass energy, E = mc², undergoing nuclear energy that could be extracted from 1 kg of hydrogen a star (HINT: the efficiency of this process is n = = 0.7%). calculate the amount of fusion in the core ofIf a 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun neutron star? (Use the mass-radius relationship R ∝ M−1/3) What is the escape velocity (in km/s) from the surface of a 1.5 M neutron star? From a 3.0 M neutron star? (Hint: Use the formula for escape velocity, Ve = 2GM r ; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 ✕ 1030 kg.) 1.5 M neutron star km/s3.0 M neutron star km/s
-  Q/ b) Vega Star of radius (1.6832) million km emit a) thermal radiation as a black body radiation at temperature of (18500 K). Calculate the Luminosity of this star. [o is Stefan-Boltzmann constant = 5.67 *x 10-5 erg cm-2 K-4 s-1]During the collapse of a supernova explosion, calculate the change in gravitational potential energy associated with the core size. Assume a typical core mass of 1.4 Msun and an initial radius of 1000 km.What determines the mass distribution of forming stars, the initial mass function (IMF)?
- Place the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O O4A supernova remnant is now 3.85 pc in radius and is expanding at 3,350 km/s. Approximately how many years ago did the supernova occur? (Note: 1 pc = 3.1 ✕ 1013 km and 1 yr = 3.2 ✕ 107 s.)
- A main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.Betelgeuse is a nearby supergiant that will eventually explode into a supernova. Let's see how awesome it would look. At peak brightness, the supernova will have a luminosity of about 10 billion times the Sun. It is 600 light-years away. All stellar brightnesses are compared with Vega, which has an intrinsic luminosity of about 60 times the Sun, a distance of 25 light-years, an absolute magnitude of 0.6 and an apparent magnitude of 0 (by definition). a) At peak brightness, how many times brighter will Betelgeuse be than Vega? b) Approximately what apparent magnitude does this correspond to? c) The Sun is about -26.5 apparent magnitude. What fraction of the Sun's brightness will Betelgeuse be?If an X-ray binary consists of a 16 solar mass star and a neutron Star orbiting each other every 15.4 days, what is their average separation? (Hint: Use the version of Keller's third law for binary stars, Ma + Mb = a^3 /p^2 ; make sure you express quantities in unites of AU, solar masses, and years. Assume the mass of a neutron Star is 1.6 solar masses.) ___________ AU